找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Completion, ?ech and Local Homology and Cohomology; Interactions Between Peter Schenzel,Anne-Marie Simon Book 2018 Springer Nature Switzerl

[復(fù)制鏈接]
樓主: 預(yù)兆前
21#
發(fā)表于 2025-3-25 04:07:56 | 只看該作者
22#
發(fā)表于 2025-3-25 09:10:02 | 只看該作者
23#
發(fā)表于 2025-3-25 13:52:27 | 只看該作者
24#
發(fā)表于 2025-3-25 18:57:46 | 只看該作者
25#
發(fā)表于 2025-3-25 22:33:14 | 只看該作者
Local Duality with Dualizing Complexes and Other Dualitiesving both local homology and local cohomology, a recurrent theme in this monograph. We also investigate the local homology of a complex with Artinian homology, more generally with mini-max homology. We end the chapter with a short approach to Greenlees’ Warwick duality.
26#
發(fā)表于 2025-3-26 01:05:16 | 只看該作者
Adic Topology and Completionhere are finer results when the ring is Noetherian, and it is helpful in Part II to see that some of these hold in greater generality and in a more general setting. In Sect. . we introduce a notion of relative flatness, which is helpful for the study of local homology. Section?. contains some remark
27#
發(fā)表于 2025-3-26 06:27:17 | 只看該作者
28#
發(fā)表于 2025-3-26 12:28:42 | 只看該作者
https://doi.org/10.1007/978-0-387-40045-7here are finer results when the ring is Noetherian, and it is helpful in Part II to see that some of these hold in greater generality and in a more general setting. In Sect. . we introduce a notion of relative flatness, which is helpful for the study of local homology. Section?. contains some remark
29#
發(fā)表于 2025-3-26 13:04:32 | 只看該作者
Traumatic Injuries to the Nails and Toeslasses . and . to unbounded complexes. Homologically complete and cohomologically torsion complexes are studied in Sect.?9.6. This is completed in Sect.?9.7 by studying the cosupport. In the final section there are change of rings theorems.
30#
發(fā)表于 2025-3-26 20:51:47 | 只看該作者
1439-7382 with those between completion and torsion and leading to new aspects of various dualizing complexes..The Appendix covers various additional and complementary aspects of the previous investigations and also prov978-3-030-07207-0978-3-319-96517-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 04:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳西县| 贵德县| 镇远县| 亚东县| 扎囊县| 开化县| 宝丰县| 甘南县| 永济市| 浮山县| 子洲县| 色达县| 伊春市| 辉县市| 镇江市| 衡南县| 肥西县| 邢台市| 剑阁县| 汾西县| 牙克石市| 修武县| 丹棱县| 武威市| 霍城县| 乌鲁木齐县| 府谷县| 合作市| 曲阳县| 盐城市| 通河县| 澄江县| 乌恰县| 顺昌县| 中江县| 渑池县| 西峡县| 台东市| 札达县| 武陟县| 包头市|