找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Completely Regular Semigroup Varieties; A Comprehensive Stud Mario Petrich,Norman R. Reilly Textbook 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 7182|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:41:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Completely Regular Semigroup Varieties
副標(biāo)題A Comprehensive Stud
編輯Mario Petrich,Norman R. Reilly
視頻videohttp://file.papertrans.cn/232/231326/231326.mp4
概述Includes recent advances, insights, results, and techniques throughout the book in order to expand on the topic.Introduces various relations and operators on the lattice of varieties of completely reg
叢書名稱Synthesis Lectures on Mathematics & Statistics
圖書封面Titlebook: Completely Regular Semigroup Varieties; A Comprehensive Stud Mario Petrich,Norman R. Reilly Textbook 2024 The Editor(s) (if applicable) and
描述.This book is a unified treatment of the most important core developments in the theory?of completely regular semigroup theory as it stands today. This volume focuses on?the lattice of varieties of completely regular semigroups. Since any in-depth study of the?lattice of varieties requires an understanding of free completely regular semigroups, the?book begins by describing the free object on countably infinite sets and the properties?of the lattice of fully invariant congruences on the free object. The authors introduce?various associated relations and operators on the lattice of varieties of completely?regular semigroups. Following that, the book covers the sublattice of varieties of bands?with a focus on the influence of that sublattice on the structure of the whole lattice.?The book concludes with the remarkable theorem due to Polák describing the whole?lattice of varieties of completely regular as a subdirect product of lattices,some of?which are well understood. The authors include recent advances, insights, results, and?techniques throughout the book..
出版日期Textbook 2024
關(guān)鍵詞Completely Regular Semigroups; Varieties of Completely Regular Semigroups; Varieties of Bands; Word Pro
版次1
doihttps://doi.org/10.1007/978-3-031-42891-3
isbn_softcover978-3-031-42893-7
isbn_ebook978-3-031-42891-3Series ISSN 1938-1743 Series E-ISSN 1938-1751
issn_series 1938-1743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Completely Regular Semigroup Varieties影響因子(影響力)




書目名稱Completely Regular Semigroup Varieties影響因子(影響力)學(xué)科排名




書目名稱Completely Regular Semigroup Varieties網(wǎng)絡(luò)公開度




書目名稱Completely Regular Semigroup Varieties網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Completely Regular Semigroup Varieties被引頻次




書目名稱Completely Regular Semigroup Varieties被引頻次學(xué)科排名




書目名稱Completely Regular Semigroup Varieties年度引用




書目名稱Completely Regular Semigroup Varieties年度引用學(xué)科排名




書目名稱Completely Regular Semigroup Varieties讀者反饋




書目名稱Completely Regular Semigroup Varieties讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:59:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:59:07 | 只看該作者
地板
發(fā)表于 2025-3-22 07:25:17 | 只看該作者
5#
發(fā)表于 2025-3-22 10:38:05 | 只看該作者
6#
發(fā)表于 2025-3-22 15:21:42 | 只看該作者
7#
發(fā)表于 2025-3-22 20:56:21 | 只看該作者
8#
發(fā)表于 2025-3-23 01:06:30 | 只看該作者
,Polák Theorem,e global properties of the interval . as well as detailed descriptions of certain of its parts. The proof of this theorem involves somewhat lengthy considerations and repeated applications of many concepts introduced and results obtained heretofore especially in Chap.?2.
9#
發(fā)表于 2025-3-23 03:43:05 | 只看該作者
10#
發(fā)表于 2025-3-23 09:07:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁明县| 墨竹工卡县| 石狮市| 白城市| 乌苏市| 宿迁市| 天长市| 石棉县| 神池县| 惠安县| 伊川县| 克什克腾旗| 集贤县| 宜昌市| 来安县| 玉树县| 日土县| 梁山县| 蒙城县| 建平县| 屯昌县| 隆子县| 潼南县| 富平县| 广宁县| 中超| 三门峡市| 瑞昌市| 平陆县| 镇康县| 汤原县| 肇源县| 临湘市| 会理县| 岗巴县| 华坪县| 柯坪县| 桦南县| 阿拉善盟| 德昌县| 英德市|