找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complementarity, Duality and Symmetry in Nonlinear Mechanics; Proceedings of the I David Y. Gao Conference proceedings 2004 Springer Scienc

[復(fù)制鏈接]
樓主: Odious
61#
發(fā)表于 2025-4-1 02:11:09 | 只看該作者
https://doi.org/10.1007/978-90-481-9577-0Boundary value problem; Finite; Fundament; calculus; mathematics; optimization; structure; theorem; partial
62#
發(fā)表于 2025-4-1 09:02:27 | 只看該作者
63#
發(fā)表于 2025-4-1 12:07:44 | 只看該作者
https://doi.org/10.1007/978-3-642-55519-0Many problems of classical mechanics are variational in nature, but not convex. This paper shows how the duality theory of convex optimization can be extended to classical mechanics. It is shown in particular that there is a duality theory for functions of square matrices which factor through the determinant.
64#
發(fā)表于 2025-4-1 16:41:36 | 只看該作者
65#
發(fā)表于 2025-4-1 20:25:48 | 只看該作者
https://doi.org/10.1007/978-3-322-94840-3This paper describes dual formulations of two entropy optimization principles, Jaynes’ maximum entropy and Kullback-Leibler’s minimum cross-entropy principles. Particular emphases are given to their applications in various optimization problems such as minimax, complementarity and nonlinear programming problems.
66#
發(fā)表于 2025-4-1 23:08:42 | 只看該作者
67#
發(fā)表于 2025-4-2 05:47:41 | 只看該作者
68#
發(fā)表于 2025-4-2 08:33:13 | 只看該作者
Non-Convex Duality,Many problems of classical mechanics are variational in nature, but not convex. This paper shows how the duality theory of convex optimization can be extended to classical mechanics. It is shown in particular that there is a duality theory for functions of square matrices which factor through the determinant.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武义县| 深泽县| 慈溪市| 阆中市| 万宁市| 襄樊市| 大同县| 夹江县| 新疆| 海口市| 天镇县| 永定县| 简阳市| 台中市| 广元市| 英德市| 庄浪县| 华容县| 监利县| 宝山区| 铁力市| 和林格尔县| 方城县| 临武县| 双城市| 高平市| 麻栗坡县| 古蔺县| 霍林郭勒市| 通渭县| 兴隆县| 应用必备| 延长县| 老河口市| 留坝县| 威宁| 灵寿县| 墨江| 特克斯县| 壶关县| 全椒县|