找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complementarity, Duality and Symmetry in Nonlinear Mechanics; Proceedings of the I David Y. Gao Conference proceedings 2004 Springer Scienc

[復(fù)制鏈接]
樓主: Odious
61#
發(fā)表于 2025-4-1 02:11:09 | 只看該作者
https://doi.org/10.1007/978-90-481-9577-0Boundary value problem; Finite; Fundament; calculus; mathematics; optimization; structure; theorem; partial
62#
發(fā)表于 2025-4-1 09:02:27 | 只看該作者
63#
發(fā)表于 2025-4-1 12:07:44 | 只看該作者
https://doi.org/10.1007/978-3-642-55519-0Many problems of classical mechanics are variational in nature, but not convex. This paper shows how the duality theory of convex optimization can be extended to classical mechanics. It is shown in particular that there is a duality theory for functions of square matrices which factor through the determinant.
64#
發(fā)表于 2025-4-1 16:41:36 | 只看該作者
65#
發(fā)表于 2025-4-1 20:25:48 | 只看該作者
https://doi.org/10.1007/978-3-322-94840-3This paper describes dual formulations of two entropy optimization principles, Jaynes’ maximum entropy and Kullback-Leibler’s minimum cross-entropy principles. Particular emphases are given to their applications in various optimization problems such as minimax, complementarity and nonlinear programming problems.
66#
發(fā)表于 2025-4-1 23:08:42 | 只看該作者
67#
發(fā)表于 2025-4-2 05:47:41 | 只看該作者
68#
發(fā)表于 2025-4-2 08:33:13 | 只看該作者
Non-Convex Duality,Many problems of classical mechanics are variational in nature, but not convex. This paper shows how the duality theory of convex optimization can be extended to classical mechanics. It is shown in particular that there is a duality theory for functions of square matrices which factor through the determinant.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定边县| 灵丘县| 沭阳县| 涿鹿县| 梁山县| 巴塘县| 获嘉县| 讷河市| 论坛| 永善县| 石渠县| 阳东县| 宁国市| 石阡县| 合川市| 波密县| 新郑市| 容城县| 肃宁县| 九龙县| 安义县| 北京市| 嘉禾县| 平和县| 阿克苏市| 台山市| 永春县| 新民市| 东兴市| 泊头市| 奉贤区| 西宁市| 留坝县| 木兰县| 泰宁县| 泰顺县| 镇坪县| 祥云县| 磐安县| 清徐县| 建德市|