找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compartmental Modeling with Networks; Gilbert G. Walter,Martha Contreras Book 1999 Birkh?user Boston 1999 Applied math.Maple.Markov.mathem

[復(fù)制鏈接]
樓主: incontestable
11#
發(fā)表于 2025-3-23 09:46:16 | 只看該作者
Planar GraphsAlthough the diagrams of those graphs we have drawn have always been in a plane, sometimes the edges cross each other. If the graph is isomorphic to one where this doesn’t occur, it is said to be .. Thus, the graphs in Figure 6.1 are planar, but the one in Figure 6.2 is not, but this is not so easy to see yet.
12#
發(fā)表于 2025-3-23 14:15:20 | 只看該作者
Graphs and MatricesIn order to store a graph or digraph in a computer, we need something other than the diagram or the formal definition. This something is the adjacency matrix, a matrix of O’s and l’s. The l’s correspond to the arcs of the digraph. Certain matrix operations will be seen to correspond to digraph concepts.
13#
發(fā)表于 2025-3-23 21:19:18 | 只看該作者
Introduction to Markov ChainsIn Chapter 7, we saw how weighted digraphs and adjacency matrices are related. In this chapter, we consider particular types of weights and matrices that are used with Markov chains, and their associated special terms, which differ from those used previously.
14#
發(fā)表于 2025-3-23 22:24:56 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:40 | 只看該作者
Absorbing Markov ChainsThe prototypes of the absorbing chains are the Russian roulette and random walk chains:
16#
發(fā)表于 2025-3-24 10:19:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:52:36 | 只看該作者
18#
發(fā)表于 2025-3-24 14:52:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:08:26 | 只看該作者
20#
發(fā)表于 2025-3-25 01:52:17 | 只看該作者
Minyu Tao,Zhiming Ding,Yang Caoving paired comparisons, in round robin tournaments in which each player plays every other one, in studying pecking order in a barnyard or in an organization. Some natural questions that arise with these digraphs are: (i) Is there always a winner? (ii) Is there an ordering of the players determined by the tournament? (iii) If so, is it unique?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎兰屯市| 威海市| 资中县| 广河县| 古田县| 屏山县| 陆川县| 肥西县| 镇巴县| 保康县| 金平| 济源市| 张北县| 茂名市| 罗田县| 蚌埠市| 遵义县| 托克托县| 黄平县| 米泉市| 抚松县| 伊川县| 察雅县| 永德县| 冀州市| 南雄市| 平远县| 临朐县| 苏州市| 安阳市| 依兰县| 托克托县| 修武县| 芜湖县| 微博| 阆中市| 伊金霍洛旗| 金昌市| 万山特区| 太康县| 永清县|