找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Riemann Surfaces; An Introduction to C Jürgen Jost Textbook 20022nd edition Springer-Verlag Berlin Heidelberg 2002 Meromorphic func

[復(fù)制鏈接]
樓主: 戰(zhàn)神
11#
發(fā)表于 2025-3-23 09:52:29 | 只看該作者
Differential Geometry of Riemann Surfaces,A two-dimensional manifold is called a surface.
12#
發(fā)表于 2025-3-23 15:21:04 | 只看該作者
Harmonic Maps,This section will recall some basic results about the spaces mentioned in the title. Readers who already have a basic knowledge about these spaces may therefore skip the present section.
13#
發(fā)表于 2025-3-23 21:17:17 | 只看該作者
,Teichmüller Spaces,In this chapter, . will denote a compact orientable two-dimensional manifold; for brevity we shall refer to such a . as a surface. If . has been given a conformal structure ., then the resulting Riemann surface will be denoted by (., .). We shall suppose that the genus of . at least two.
14#
發(fā)表于 2025-3-24 01:29:35 | 只看該作者
15#
發(fā)表于 2025-3-24 04:05:16 | 只看該作者
16#
發(fā)表于 2025-3-24 09:25:39 | 只看該作者
Zusammenfassende Betrachtung und Diskussion,tubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQ% dacaWGvbGaeyOKH4QaamOvaaaa!3B3F!is called a (coordinate) chart.
17#
發(fā)表于 2025-3-24 12:46:14 | 只看該作者
Topological Foundations,tubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQ% dacaWGvbGaeyOKH4QaamOvaaaa!3B3F!is called a (coordinate) chart.
18#
發(fā)表于 2025-3-24 16:34:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:02 | 只看該作者
Textbook 20022nd editionluding an introduction to Teichmüller theory. The analytic approach is likewise new as it is based on the theory of harmonic maps. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.
20#
發(fā)表于 2025-3-24 23:51:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 17:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡觉县| 惠东县| 云南省| 贡山| 孝义市| 泗水县| 嘉黎县| 安化县| 醴陵市| 天镇县| 本溪| 英德市| 多伦县| 香格里拉县| 长治市| 竹山县| 北票市| 中卫市| 五华县| 雅安市| 鄱阳县| 大新县| 霍州市| 利川市| 莫力| 宁河县| 马尔康县| 泊头市| 原阳县| 凤台县| 石泉县| 瑞昌市| 阿图什市| 阿坝| 洪湖市| 彭阳县| 红原县| 玛纳斯县| 卢龙县| 黔南| 聊城市|