找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Convex Sets and Boundary Integrals; Erik M. Alfsen Book 1971 Springer-Verlag Berlin Heidelberg 1971 Boundary.Convexity.Finite.Inte

[復制鏈接]
查看: 48994|回復: 35
樓主
發(fā)表于 2025-3-21 18:12:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Compact Convex Sets and Boundary Integrals
編輯Erik M. Alfsen
視頻videohttp://file.papertrans.cn/231/230780/230780.mp4
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
圖書封面Titlebook: Compact Convex Sets and Boundary Integrals;  Erik M. Alfsen Book 1971 Springer-Verlag Berlin Heidelberg 1971 Boundary.Convexity.Finite.Inte
描述The importance of convexity arguments in functional analysis has long been realized, but a comprehensive theory of infinite-dimensional convex sets has hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech- nically difficult, these theorems attracted many mathematicians, and the proofs were gradually simplified and fitted into a general theory. The results can no longer be considered very "deep" or difficult, but they certainly remain all the more important. Today Choquet Theory provides a unified approach to integral representations in fields as diverse as potential theory, probability, function algebras, operator theory, group representations and ergodic theory. At the same time the new concepts and results have made it possible, and relevant, to ask new questions within the abstract theory itself. Such questions pertain to the interplay between compact convex sets K and their associated spaces A(K) of continuous affine functions; to the duality between faces of K and appropr
出版日期Book 1971
關(guān)鍵詞Boundary; Convexity; Finite; Integral; Integrals; Konvexe Menge; algebra; function; functional analysis; oper
版次1
doihttps://doi.org/10.1007/978-3-642-65009-3
isbn_softcover978-3-642-65011-6
isbn_ebook978-3-642-65009-3
copyrightSpringer-Verlag Berlin Heidelberg 1971
The information of publication is updating

書目名稱Compact Convex Sets and Boundary Integrals影響因子(影響力)




書目名稱Compact Convex Sets and Boundary Integrals影響因子(影響力)學科排名




書目名稱Compact Convex Sets and Boundary Integrals網(wǎng)絡(luò)公開度




書目名稱Compact Convex Sets and Boundary Integrals網(wǎng)絡(luò)公開度學科排名




書目名稱Compact Convex Sets and Boundary Integrals被引頻次




書目名稱Compact Convex Sets and Boundary Integrals被引頻次學科排名




書目名稱Compact Convex Sets and Boundary Integrals年度引用




書目名稱Compact Convex Sets and Boundary Integrals年度引用學科排名




書目名稱Compact Convex Sets and Boundary Integrals讀者反饋




書目名稱Compact Convex Sets and Boundary Integrals讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:46:30 | 只看該作者
Soziale Bewegungen in der Gegenwart,A (partially) ordered vector space . (over ?) is said to be . if the negative elements . are the only ones for which {.} has an upper bound. A vector subspace . of ordered vector space is said to be an . if
板凳
發(fā)表于 2025-3-22 01:10:03 | 只看該作者
Representation of Points by Boundary Measures,Throughout this chapter we shall consider an arbitrary, but fixed, locally convex Hausdorff space . over ?. If . and .’ are convex subsets of . and . ? .’, then .(.’) shall denote the vector space of all restrictions to . of continuous affine real-valued functions on .’. For simplicity we write . in the place of ., and we note that generally
地板
發(fā)表于 2025-3-22 07:36:27 | 只看該作者
5#
發(fā)表于 2025-3-22 11:37:55 | 只看該作者
6#
發(fā)表于 2025-3-22 15:58:33 | 只看該作者
https://doi.org/10.1007/978-3-642-65009-3Boundary; Convexity; Finite; Integral; Integrals; Konvexe Menge; algebra; function; functional analysis; oper
7#
發(fā)表于 2025-3-22 19:02:34 | 只看該作者
978-3-642-65011-6Springer-Verlag Berlin Heidelberg 1971
8#
發(fā)表于 2025-3-23 00:57:43 | 只看該作者
ex sets has hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech- nically difficult, these
9#
發(fā)表于 2025-3-23 05:11:37 | 只看該作者
Book 1971s hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech- nically difficult, these theorems a
10#
發(fā)表于 2025-3-23 08:48:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
牡丹江市| 扎兰屯市| 来宾市| 兴城市| 屏边| 清镇市| 牟定县| 壶关县| 化德县| 甘谷县| 马山县| 汕头市| 高密市| 海门市| 和静县| 荥经县| 太康县| 荆门市| 富蕴县| 广汉市| 乐陵市| 大城县| 营山县| 怀安县| 治县。| 会同县| 贡嘎县| 长泰县| 镇巴县| 宁阳县| 万全县| 勃利县| 淮阳县| 扶沟县| 新乡市| 郴州市| 宁强县| 吉木萨尔县| 泰兴市| 周宁县| 贡山|