找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Complex Surfaces; Wolf P. Barth,Klaus Hulek,Antonius Ven Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[復(fù)制鏈接]
樓主: 脾氣好
31#
發(fā)表于 2025-3-26 23:30:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:09:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:55:24 | 只看該作者
0071-1136 ry only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom978-3-642-57738-3978-3-642-57739-0Series ISSN 0071-1136 Series E-ISSN 2197-5655
34#
發(fā)表于 2025-3-27 11:21:39 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:48 | 只看該作者
Curves on Surfaces,ve on a surface and is treated in Sects. 1–6. The second theme, developed in Sects. 7–8 is embedded resolution of singularities of curves and the application to the so-called simple singularities of curves.
36#
發(fā)表于 2025-3-27 20:05:23 | 只看該作者
37#
發(fā)表于 2025-3-28 00:44:27 | 只看該作者
Some General Properties of Surfaces,n compact surfaces. The main point is that for surfaces the Fr?hlicher spectral sequence always degenerates. Combining the consequences of this fact with the topological index theorem we find, following Kodaira, relations between topological and analytical invariants which are crucial in handling no
38#
發(fā)表于 2025-3-28 05:30:56 | 只看該作者
39#
發(fā)表于 2025-3-28 09:35:59 | 只看該作者
40#
發(fā)表于 2025-3-28 10:28:48 | 只看該作者
K3-Surfaces and Enriques Surfaces, main results in Sect. 2. In Chapt. IV, Sect. 3 we saw that K 3- surfaces are K?hler, a fact we use from the start. The main tool for studying moduli of K 3- surfaces is the period map and we describe these moduli spaces in terms of the corresponding period domains. This is done in Sect. 6–14 after
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山阳县| 东兴市| 保靖县| 德保县| 磐安县| 新疆| 东港市| 安宁市| 扎赉特旗| 长丰县| 沂水县| 威海市| 尉氏县| 义乌市| 大港区| 江川县| 湖南省| 大余县| 晋城| 肃南| 绥棱县| 囊谦县| 澄城县| 台江县| 宁化县| 武功县| 兴城市| 长顺县| 怀来县| 苍梧县| 会东县| 徐汇区| 仙游县| 常熟市| 全椒县| 武穴市| 合川市| 张北县| 太保市| 股票| 丽水市|