找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Complex Surfaces; Wolf P. Barth,Klaus Hulek,Antonius Ven Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[復(fù)制鏈接]
樓主: 脾氣好
31#
發(fā)表于 2025-3-26 23:30:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:09:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:55:24 | 只看該作者
0071-1136 ry only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom978-3-642-57738-3978-3-642-57739-0Series ISSN 0071-1136 Series E-ISSN 2197-5655
34#
發(fā)表于 2025-3-27 11:21:39 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:48 | 只看該作者
Curves on Surfaces,ve on a surface and is treated in Sects. 1–6. The second theme, developed in Sects. 7–8 is embedded resolution of singularities of curves and the application to the so-called simple singularities of curves.
36#
發(fā)表于 2025-3-27 20:05:23 | 只看該作者
37#
發(fā)表于 2025-3-28 00:44:27 | 只看該作者
Some General Properties of Surfaces,n compact surfaces. The main point is that for surfaces the Fr?hlicher spectral sequence always degenerates. Combining the consequences of this fact with the topological index theorem we find, following Kodaira, relations between topological and analytical invariants which are crucial in handling no
38#
發(fā)表于 2025-3-28 05:30:56 | 只看該作者
39#
發(fā)表于 2025-3-28 09:35:59 | 只看該作者
40#
發(fā)表于 2025-3-28 10:28:48 | 只看該作者
K3-Surfaces and Enriques Surfaces, main results in Sect. 2. In Chapt. IV, Sect. 3 we saw that K 3- surfaces are K?hler, a fact we use from the start. The main tool for studying moduli of K 3- surfaces is the period map and we describe these moduli spaces in terms of the corresponding period domains. This is done in Sect. 6–14 after
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 罗江县| 江永县| 古丈县| 通榆县| 嫩江县| 郁南县| 二连浩特市| 凤冈县| 望奎县| 定远县| 武宣县| 明星| 平山县| 太仆寺旗| 哈尔滨市| 峨边| 泊头市| 庆阳市| 靖远县| 秦安县| 灵山县| 湖南省| 山东省| 松阳县| 抚宁县| 铜梁县| 海林市| 牙克石市| 和田市| 凌源市| 景泰县| 鄂托克旗| 滨海县| 夏河县| 怀安县| 盘山县| 五大连池市| 云安县| 柳江县| 习水县|