找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Group Schemes; F. Oort Book 1966 Springer-Verlag Berlin Heidelberg 1966 Abelian variety.Group.Kommutative Algebra.Mathematik.a

[復(fù)制鏈接]
查看: 50475|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:36:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Commutative Group Schemes
編輯F. Oort
視頻videohttp://file.papertrans.cn/231/230766/230766.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Commutative Group Schemes;  F. Oort Book 1966 Springer-Verlag Berlin Heidelberg 1966 Abelian variety.Group.Kommutative Algebra.Mathematik.a
描述We restrict ourselves to two aspects of the field of group schemes, in which the results are fairly complete: commutative algebraic group schemes over an algebraically closed field (of characteristic different from zero), and a duality theory concern- ing abelian schemes over a locally noetherian prescheme. The prelim- inaries for these considerations are brought together in chapter I. SERRE described properties of the category of commutative quasi-algebraic groups by introducing pro-algebraic groups. In char8teristic zero the situation is clear. In characteristic different from zero information on finite group schemee is needed in order to handle group schemes; this information can be found in work of GABRIEL. In the second chapter these ideas of SERRE and GABRIEL are put together. Also extension groups of elementary group schemes are determined. A suggestion in a paper by MANIN gave crystallization to a fee11ng of symmetry concerning subgroups of abelian varieties. In the third chapter we prove that the dual of an abelian scheme and the linear dual of a finite subgroup scheme are related in a very natural way. Afterwards we became aware that a special case of this theorem was alr
出版日期Book 1966
關(guān)鍵詞Abelian variety; Group; Kommutative Algebra; Mathematik; algebra
版次1
doihttps://doi.org/10.1007/BFb0097479
isbn_softcover978-3-540-03598-5
isbn_ebook978-3-540-37171-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1966
The information of publication is updating

書目名稱Commutative Group Schemes影響因子(影響力)




書目名稱Commutative Group Schemes影響因子(影響力)學(xué)科排名




書目名稱Commutative Group Schemes網(wǎng)絡(luò)公開度




書目名稱Commutative Group Schemes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Commutative Group Schemes被引頻次




書目名稱Commutative Group Schemes被引頻次學(xué)科排名




書目名稱Commutative Group Schemes年度引用




書目名稱Commutative Group Schemes年度引用學(xué)科排名




書目名稱Commutative Group Schemes讀者反饋




書目名稱Commutative Group Schemes讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:49 | 只看該作者
Commutative Group Schemes978-3-540-37171-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 02:42:43 | 只看該作者
地板
發(fā)表于 2025-3-22 07:28:38 | 只看該作者
978-3-540-03598-5Springer-Verlag Berlin Heidelberg 1966
5#
發(fā)表于 2025-3-22 11:43:19 | 只看該作者
0075-8434 scheme and the linear dual of a finite subgroup scheme are related in a very natural way. Afterwards we became aware that a special case of this theorem was alr978-3-540-03598-5978-3-540-37171-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
6#
發(fā)表于 2025-3-22 14:11:03 | 只看該作者
7#
發(fā)表于 2025-3-22 17:41:08 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:50 | 只看該作者
9#
發(fā)表于 2025-3-23 04:32:56 | 只看該作者
10#
發(fā)表于 2025-3-23 06:55:01 | 只看該作者
Second Chances Tim and Tracy hope, but also further uncertainty. What follows is their journey, including heartfelt themes that emerged, highlighting the importance of communication, positivity, and TCT team members “taking the time“ and finding meaning amid the chaos and challenges of fighting cancer.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜川市| 定南县| 元谋县| 云浮市| 尤溪县| 正阳县| 铁岭县| 忻州市| 鲁山县| 乌兰县| 灵山县| 崇信县| 南汇区| 娱乐| 承德县| 抚顺县| 拉萨市| 阿坝县| 屏东市| 浏阳市| 墨竹工卡县| 巴南区| 临海市| 三河市| 凌云县| 邵阳县| 西贡区| 垦利县| 探索| 衢州市| 宜阳县| 明星| 安平县| 武川县| 安阳市| 建瓯市| 宣汉县| 开平市| 旬阳县| 安多县| 中江县|