找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebra, Singularities and Computer Algebra; Proceedings of the N Jürgen Herzog,Victor Vuletescu Conference proceedings 2003 Sp

[復(fù)制鏈接]
樓主: BID
21#
發(fā)表于 2025-3-25 05:05:00 | 只看該作者
The Dawn of Soviet Influence in Egyptin this paper. If . A/m is alge- braically closed and .≥. then Χ. is infinite. In contrast, for each field . which is not algebraically closed and for each integer . ≥ 0, there exists a Noetherian complete equi-characteristic local integral domain A with dim A = d such that (1) the normalization of
22#
發(fā)表于 2025-3-25 11:21:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:21:44 | 只看該作者
Victor Zaslavsky,Robert J. BrymThese are distinguished by their arithmetical genus, their Hartshorne-Rao module and their homological behavior. The classification is done by computations of the cohomology of certain divisors on the surface scroll. Finally several illustrating examples are discussed.
24#
發(fā)表于 2025-3-25 17:56:08 | 只看該作者
The Evolution of , with the Soviet Union,onstruct a family of non- isomorphic indecomposable modules of G-dimension zero with parameters in an open subset of pro- jective space. We shall finally show that the subcategory consisting of modules of G-dimension zero over . is not necessarily a contravariantly finite subcategory in the category
25#
發(fā)表于 2025-3-25 23:54:59 | 只看該作者
26#
發(fā)表于 2025-3-26 02:09:36 | 只看該作者
1568-2609 Overview: 978-1-4020-1487-1978-94-007-1092-4Series ISSN 1568-2609
27#
發(fā)表于 2025-3-26 05:18:13 | 只看該作者
28#
發(fā)表于 2025-3-26 08:34:25 | 只看該作者
https://doi.org/10.1057/9780230598423ups of affine complex hyperplane arrangement complements is introduced and explored..This approach gives in particular new upper-bounds for the dimension of the twisted cohomology groups of line arrangement complements in the complex affine plane.
29#
發(fā)表于 2025-3-26 12:54:41 | 只看該作者
30#
發(fā)表于 2025-3-26 17:11:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南京市| 海安县| 罗平县| 乐亭县| 宜都市| 兴和县| 珠海市| 华坪县| 石家庄市| 高州市| 汾阳市| 宁国市| 宜春市| 南漳县| 会同县| 聂荣县| 玛多县| 共和县| 天柱县| 萨迦县| 白朗县| 崇明县| 乡城县| 夏津县| 阳城县| 错那县| 庄河市| 皋兰县| 南充市| 德安县| 离岛区| 红安县| 当雄县| 望奎县| 桑植县| 黔东| 双辽市| 西昌市| 射洪县| 延安市| 麻城市|