找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebra; Expository Papers De Irena Peeva Book 2013 Springer Science+Business Media New York 2013 Castelnuovo-Mumford regularit

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:51:35 | 只看該作者
22#
發(fā)表于 2025-3-25 09:11:30 | 只看該作者
http://image.papertrans.cn/c/image/230752.jpg
23#
發(fā)表于 2025-3-25 11:47:26 | 只看該作者
24#
發(fā)表于 2025-3-25 16:34:17 | 只看該作者
25#
發(fā)表于 2025-3-25 23:51:47 | 只看該作者
Changing Attitudes to Delinquency K-algebras R whose residue field K has a linear free resolution as an R-module. The Castelnuovo-Mumford regularity is, after Krull dimension and multiplicity, perhaps the most important invariant of a finitely generated graded module M, as it controls the vanishing of both syzygies and the local co
26#
發(fā)表于 2025-3-26 03:08:02 | 只看該作者
27#
發(fā)表于 2025-3-26 08:09:00 | 只看該作者
Mary Buckley (Lecturer in Politics)s. However, any algebraist contemplating the question, “on what locus of prime ideals in Spec(R) does an element e in a module E generate a free summand?”, has in fact encountered the concept of an order ideal. In the account on order ideals and their applications in this paper, it is our intent to
28#
發(fā)表于 2025-3-26 10:08:28 | 只看該作者
29#
發(fā)表于 2025-3-26 15:18:30 | 只看該作者
Soviet Social Scientists Talkingscussed. These include some problems that, historically, motivated the development of the theory. One of these is the theorem that rings of invariants of linearly reductive groups acting on regular rings are Cohen-Macaulay, including normal rings generated by monomials. Another is the characterizati
30#
發(fā)表于 2025-3-26 18:22:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牟定县| 泰州市| 易门县| 屯门区| 洛浦县| 连南| 津南区| 牡丹江市| 临安市| 吉林市| 司法| 沁源县| 吴川市| 苏州市| 静安区| 赣榆县| 资溪县| 垣曲县| 台北市| 余干县| 上高县| 光山县| 成都市| 海林市| 清丰县| 榕江县| 安康市| 肥西县| 南通市| 呼和浩特市| 张家川| 咸丰县| 光山县| 彰武县| 巫山县| 喜德县| 开江县| 抚宁县| 兴和县| 阿拉善右旗| 溧水县|