找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebra; with a View Toward A David Eisenbud Textbook 1995 Springer Science+Business Media New York 1995 Algebraic Geometry.alg

[復(fù)制鏈接]
樓主: 女孩
31#
發(fā)表于 2025-3-26 22:09:23 | 只看該作者
32#
發(fā)表于 2025-3-27 02:41:46 | 只看該作者
33#
發(fā)表于 2025-3-27 07:26:27 | 只看該作者
Fundamental Definitions of Dimension Theoryoved earlier in this book, before we had the language to describe them: the characterization of dimension zero from Chapter 2 and the properties of integral maps (relative dimension zero) from Chapter 4. To make this chapter and what follows independent of the introductory Chapter 8, we repeat a few definitions.
34#
發(fā)表于 2025-3-27 13:31:15 | 只看該作者
https://doi.org/10.1007/978-1-4612-5350-1Algebraic Geometry; algebra; algebraic geometry; category theory; cohomology; colimit; commutative algebra
35#
發(fā)表于 2025-3-27 16:34:30 | 只看該作者
978-0-387-94269-8Springer Science+Business Media New York 1995
36#
發(fā)表于 2025-3-27 21:37:47 | 只看該作者
Textbook 1995wards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connectio
37#
發(fā)表于 2025-3-27 21:57:53 | 只看該作者
https://doi.org/10.1007/978-94-010-3670-2ld and . = .[., …, .]/., then the completion of . with respect to . = (., …, .) is the ring .[[., …, .]]//.[[., …, .]]. General completions can similarly be defined in terms of formal power series (Exercise 7.11), but we shall give an intrinsic development.
38#
發(fā)表于 2025-3-28 03:48:42 | 只看該作者
39#
發(fā)表于 2025-3-28 06:18:40 | 只看該作者
Completions and Hensel’s Lemmald and . = .[., …, .]/., then the completion of . with respect to . = (., …, .) is the ring .[[., …, .]]//.[[., …, .]]. General completions can similarly be defined in terms of formal power series (Exercise 7.11), but we shall give an intrinsic development.
40#
發(fā)表于 2025-3-28 12:40:25 | 只看該作者
Dimension and Codimension Onend some consequences of normality, including a bit of the theory of Dedekind domains; study the length of a one-dimensional ring modulo a principal ideal; and prove that the integral closure of a one-dimensional Noetherian domain is Noetherian.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂伦春自治旗| 松滋市| 琼结县| 青浦区| 襄城县| 凤台县| 玛纳斯县| 碌曲县| 上蔡县| 弋阳县| 中西区| 临城县| 鹿邑县| 黄陵县| 无极县| 合山市| 桃园县| 上林县| 林芝县| 鸡泽县| 丹东市| 武冈市| 乐业县| 乐山市| 贵阳市| 额尔古纳市| 阜城县| 垣曲县| 香河县| 北京市| 迁安市| 华宁县| 绵阳市| 长寿区| 雷州市| 开封县| 上饶县| 南昌县| 甘孜县| 郁南县| 泌阳县|