找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebra; with a View Toward A David Eisenbud Textbook 1995 Springer Science+Business Media New York 1995 Algebraic Geometry.alg

[復(fù)制鏈接]
樓主: 女孩
31#
發(fā)表于 2025-3-26 22:09:23 | 只看該作者
32#
發(fā)表于 2025-3-27 02:41:46 | 只看該作者
33#
發(fā)表于 2025-3-27 07:26:27 | 只看該作者
Fundamental Definitions of Dimension Theoryoved earlier in this book, before we had the language to describe them: the characterization of dimension zero from Chapter 2 and the properties of integral maps (relative dimension zero) from Chapter 4. To make this chapter and what follows independent of the introductory Chapter 8, we repeat a few definitions.
34#
發(fā)表于 2025-3-27 13:31:15 | 只看該作者
https://doi.org/10.1007/978-1-4612-5350-1Algebraic Geometry; algebra; algebraic geometry; category theory; cohomology; colimit; commutative algebra
35#
發(fā)表于 2025-3-27 16:34:30 | 只看該作者
978-0-387-94269-8Springer Science+Business Media New York 1995
36#
發(fā)表于 2025-3-27 21:37:47 | 只看該作者
Textbook 1995wards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connectio
37#
發(fā)表于 2025-3-27 21:57:53 | 只看該作者
https://doi.org/10.1007/978-94-010-3670-2ld and . = .[., …, .]/., then the completion of . with respect to . = (., …, .) is the ring .[[., …, .]]//.[[., …, .]]. General completions can similarly be defined in terms of formal power series (Exercise 7.11), but we shall give an intrinsic development.
38#
發(fā)表于 2025-3-28 03:48:42 | 只看該作者
39#
發(fā)表于 2025-3-28 06:18:40 | 只看該作者
Completions and Hensel’s Lemmald and . = .[., …, .]/., then the completion of . with respect to . = (., …, .) is the ring .[[., …, .]]//.[[., …, .]]. General completions can similarly be defined in terms of formal power series (Exercise 7.11), but we shall give an intrinsic development.
40#
發(fā)表于 2025-3-28 12:40:25 | 只看該作者
Dimension and Codimension Onend some consequences of normality, including a bit of the theory of Dedekind domains; study the length of a one-dimensional ring modulo a principal ideal; and prove that the integral closure of a one-dimensional Noetherian domain is Noetherian.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂尔多斯市| 乐昌市| 忻城县| 三门县| 东乡| 奈曼旗| 溆浦县| 沙坪坝区| 淳安县| 长岭县| 新干县| 宾阳县| 克什克腾旗| 剑川县| 宜春市| 尉氏县| 澜沧| 惠来县| 葵青区| 岳池县| 伽师县| 广水市| 托克逊县| 会同县| 长阳| 卢氏县| 华宁县| 班玛县| 南华县| 焦作市| 舒城县| 韶山市| 阳江市| 百色市| 广河县| 武胜县| 南木林县| 常宁市| 陇南市| 肇州县| 长寿区|