找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebra; with a View Toward A David Eisenbud Textbook 1995 Springer Science+Business Media New York 1995 Algebraic Geometry.alg

[復(fù)制鏈接]
樓主: 女孩
31#
發(fā)表于 2025-3-26 22:09:23 | 只看該作者
32#
發(fā)表于 2025-3-27 02:41:46 | 只看該作者
33#
發(fā)表于 2025-3-27 07:26:27 | 只看該作者
Fundamental Definitions of Dimension Theoryoved earlier in this book, before we had the language to describe them: the characterization of dimension zero from Chapter 2 and the properties of integral maps (relative dimension zero) from Chapter 4. To make this chapter and what follows independent of the introductory Chapter 8, we repeat a few definitions.
34#
發(fā)表于 2025-3-27 13:31:15 | 只看該作者
https://doi.org/10.1007/978-1-4612-5350-1Algebraic Geometry; algebra; algebraic geometry; category theory; cohomology; colimit; commutative algebra
35#
發(fā)表于 2025-3-27 16:34:30 | 只看該作者
978-0-387-94269-8Springer Science+Business Media New York 1995
36#
發(fā)表于 2025-3-27 21:37:47 | 只看該作者
Textbook 1995wards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connectio
37#
發(fā)表于 2025-3-27 21:57:53 | 只看該作者
https://doi.org/10.1007/978-94-010-3670-2ld and . = .[., …, .]/., then the completion of . with respect to . = (., …, .) is the ring .[[., …, .]]//.[[., …, .]]. General completions can similarly be defined in terms of formal power series (Exercise 7.11), but we shall give an intrinsic development.
38#
發(fā)表于 2025-3-28 03:48:42 | 只看該作者
39#
發(fā)表于 2025-3-28 06:18:40 | 只看該作者
Completions and Hensel’s Lemmald and . = .[., …, .]/., then the completion of . with respect to . = (., …, .) is the ring .[[., …, .]]//.[[., …, .]]. General completions can similarly be defined in terms of formal power series (Exercise 7.11), but we shall give an intrinsic development.
40#
發(fā)表于 2025-3-28 12:40:25 | 只看該作者
Dimension and Codimension Onend some consequences of normality, including a bit of the theory of Dedekind domains; study the length of a one-dimensional ring modulo a principal ideal; and prove that the integral closure of a one-dimensional Noetherian domain is Noetherian.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南靖县| 临武县| 鹤岗市| 青浦区| 铜鼓县| 咸宁市| 高雄市| 志丹县| 肃北| 永丰县| 西青区| 邢台县| 全州县| 望都县| 万山特区| 吉水县| 罗田县| 大荔县| 牙克石市| 伊川县| 岢岚县| 开原市| 长治市| 丹阳市| 英超| 靖宇县| 连山| 屯昌县| 永清县| 高邑县| 保定市| 广东省| 大同县| 百色市| 常山县| 东宁县| 德钦县| 桂林市| 汤原县| 进贤县| 文成县|