找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebra; Recent Advances in C Marco Fontana,Sophie Frisch,Sarah Glaz Book 2014 Springer Science+Business Media New York 2014 Gr

[復(fù)制鏈接]
樓主: 吞食
11#
發(fā)表于 2025-3-23 13:36:22 | 只看該作者
Localizing Global Properties to Individual Maximal Ideals, in ., . knows when .. In addition, this allows . to understand the intersection of ideals it contains. In some cases, if a single maximal ideal knows ., then . will satisfy .. For example, there are such .s for . ∈ {PIDs, Noetherian domains, Domains with ACCP, Domains with finite character}.
12#
發(fā)表于 2025-3-23 16:12:49 | 只看該作者
Integral Closure of Rings of Integer-Valued Polynomials on Algebras,t is obtained by identifying . with a .-subalgebra of the matrix algebra ..(.) for some . and then considering polynomials which map a matrix to a matrix integral over .. We also obtain information about polynomially dense subsets of these rings of polynomials.
13#
發(fā)表于 2025-3-23 21:29:53 | 只看該作者
https://doi.org/10.1007/978-1-349-01567-2oof shows that a finitely generated .-module over a complete semilocal ring is quasi-complete. However, the converse is false as any DVR is quasi-complete. In this paper we survey known results about (weakly) quasi-complete rings and modules and prove some new results.
14#
發(fā)表于 2025-3-24 01:49:32 | 只看該作者
https://doi.org/10.1007/978-3-319-99199-3is locally pseudo-almost divided if and only if both . and . are locally pseudo-almost divided. A similar pullback transfer result is given for the “straight domain” property (which is not known to be portable) by imposing additional restrictions on the data ., ., ..
15#
發(fā)表于 2025-3-24 04:10:42 | 只看該作者
Army and Party, War and Politicsvery regular maximal ideal of . has at most 2 maximal ideals in . lying over it. This characterization is deduced from a more general theorem regarding what, motivated by work of Knebusch and Zhang, we term a finitely stable subring . of a ring between . and its complete ring of quotients.
16#
發(fā)表于 2025-3-24 07:48:20 | 只看該作者
The Changing Scope of Military Strategy true. We provide several types of counterexamples and present a few characterizations for monadically Krull monoids. Furthermore, we show that rings of integer-valued polynomials over factorial domains are monadically Krull. Finally, we investigate the connections between monadically Krull monoids and generalizations of SP-domains.
17#
發(fā)表于 2025-3-24 12:32:27 | 只看該作者
18#
發(fā)表于 2025-3-24 17:32:47 | 只看該作者
19#
發(fā)表于 2025-3-24 21:39:32 | 只看該作者
20#
發(fā)表于 2025-3-25 03:01:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三穗县| 综艺| 安图县| 什邡市| 开鲁县| 临泽县| 芦溪县| 池州市| 西乌| SHOW| 沈阳市| 邯郸市| 元江| 望城县| 新安县| 连城县| 井陉县| 平遥县| 浦县| 潞西市| 汉阴县| 五原县| 旬阳县| 库车县| 文山县| 贺兰县| 天长市| 社会| 巴楚县| 吴桥县| 建始县| 津南区| 上饶市| 清镇市| 河东区| 宣城市| 凌海市| 龙游县| 昌图县| 特克斯县| 额济纳旗|