找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Community Search over Big Graphs; Xin Huang,Laks V. S. Lakshmanan,Jianliang Xu Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: commingle
11#
發(fā)表于 2025-3-23 10:13:47 | 只看該作者
12#
發(fā)表于 2025-3-23 14:55:41 | 只看該作者
Further Readings and Future Directions,This chapter first lists the community search models that are not detailed in the previous chapters. We then conclude the book by discussing future directions and open problems for further research in community search over large graphs.
13#
發(fā)表于 2025-3-23 21:44:30 | 只看該作者
14#
發(fā)表于 2025-3-24 01:29:12 | 只看該作者
2153-5418 vailable real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this impo978-3-031-00746-0978-3-031-01874-9Series ISSN 2153-5418 Series E-ISSN 2153-5426
15#
發(fā)表于 2025-3-24 04:35:16 | 只看該作者
Book 2019thms, and applications, and provide a comprehensive comparison of the existing techniques. This book finally concludes by listing publicly available real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this impo
16#
發(fā)表于 2025-3-24 08:59:28 | 只看該作者
2153-5418 logical, collaboration, and communication networks. Recently, community search over graphs has attracted significantly increasing attention, from small, simple, and static graphs to big, evolving, attributed, and location-based graphs...In this book, we first review the basic concepts of networks, c
17#
發(fā)表于 2025-3-24 11:20:55 | 只看該作者
18#
發(fā)表于 2025-3-24 18:42:28 | 只看該作者
Birmingham’s Postindustrial Metall community search algorithms discussed in the previous chapters do not consider the vertices’ spatial information. In this chapter, we introduce the techniques of searching geo-social groups in geo-social networks by considering both the communities’ structural cohesiveness and spatial proximity.
19#
發(fā)表于 2025-3-24 22:15:45 | 只看該作者
Attributed Community Search,ction (PPI) networks, citation graphs, and collaboration networks, nodes tend to have attributes. Most simple structural community search algorithms ignore these attributes and cannot find communities with good cohesion w.r.t. their node attributes.
20#
發(fā)表于 2025-3-25 01:42:51 | 只看該作者
Geo-Social Group Search,l community search algorithms discussed in the previous chapters do not consider the vertices’ spatial information. In this chapter, we introduce the techniques of searching geo-social groups in geo-social networks by considering both the communities’ structural cohesiveness and spatial proximity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诸暨市| 静乐县| 栖霞市| 安宁市| 莱西市| 焉耆| 卓资县| 岢岚县| 桂东县| 河东区| 临漳县| 砚山县| 灌阳县| 泗洪县| 嘉义市| 哈尔滨市| 理塘县| 南昌县| 云阳县| 南澳县| 金阳县| 怀柔区| 桐乡市| 洪雅县| 镇原县| 社会| 界首市| 桂阳县| 醴陵市| 榆中县| 庄河市| 阳城县| 海阳市| 仁化县| 怀安县| 渑池县| 安泽县| 张家川| 文水县| 前郭尔| 板桥市|