找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Community Search over Big Graphs; Xin Huang,Laks V. S. Lakshmanan,Jianliang Xu Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: commingle
11#
發(fā)表于 2025-3-23 10:13:47 | 只看該作者
12#
發(fā)表于 2025-3-23 14:55:41 | 只看該作者
Further Readings and Future Directions,This chapter first lists the community search models that are not detailed in the previous chapters. We then conclude the book by discussing future directions and open problems for further research in community search over large graphs.
13#
發(fā)表于 2025-3-23 21:44:30 | 只看該作者
14#
發(fā)表于 2025-3-24 01:29:12 | 只看該作者
2153-5418 vailable real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this impo978-3-031-00746-0978-3-031-01874-9Series ISSN 2153-5418 Series E-ISSN 2153-5426
15#
發(fā)表于 2025-3-24 04:35:16 | 只看該作者
Book 2019thms, and applications, and provide a comprehensive comparison of the existing techniques. This book finally concludes by listing publicly available real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this impo
16#
發(fā)表于 2025-3-24 08:59:28 | 只看該作者
2153-5418 logical, collaboration, and communication networks. Recently, community search over graphs has attracted significantly increasing attention, from small, simple, and static graphs to big, evolving, attributed, and location-based graphs...In this book, we first review the basic concepts of networks, c
17#
發(fā)表于 2025-3-24 11:20:55 | 只看該作者
18#
發(fā)表于 2025-3-24 18:42:28 | 只看該作者
Birmingham’s Postindustrial Metall community search algorithms discussed in the previous chapters do not consider the vertices’ spatial information. In this chapter, we introduce the techniques of searching geo-social groups in geo-social networks by considering both the communities’ structural cohesiveness and spatial proximity.
19#
發(fā)表于 2025-3-24 22:15:45 | 只看該作者
Attributed Community Search,ction (PPI) networks, citation graphs, and collaboration networks, nodes tend to have attributes. Most simple structural community search algorithms ignore these attributes and cannot find communities with good cohesion w.r.t. their node attributes.
20#
發(fā)表于 2025-3-25 01:42:51 | 只看該作者
Geo-Social Group Search,l community search algorithms discussed in the previous chapters do not consider the vertices’ spatial information. In this chapter, we introduce the techniques of searching geo-social groups in geo-social networks by considering both the communities’ structural cohesiveness and spatial proximity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澜沧| 五莲县| 禹州市| 张家口市| 米林县| 塔河县| 恩平市| 库车县| 南江县| 河南省| 闽清县| 赤城县| 德令哈市| 石阡县| 通江县| 新民市| 雅安市| 榆社县| 师宗县| 德惠市| 葵青区| 莱州市| 康马县| 营口市| 玉溪市| 青河县| 武宁县| 自贡市| 苏尼特左旗| 自治县| 郁南县| 通化市| 确山县| 万源市| 龙胜| 交口县| 壤塘县| 黄平县| 荃湾区| 山西省| 固阳县|