找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Communication Efficient Federated Learning for Wireless Networks; Mingzhe Chen,Shuguang Cui Book 2024 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 11884|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:01:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Communication Efficient Federated Learning for Wireless Networks
編輯Mingzhe Chen,Shuguang Cui
視頻videohttp://file.papertrans.cn/231/230395/230395.mp4
概述Offers a comprehensive and systematic book on design of federated learning.Provides key approaches for optimizing performance of federated learning.Demonstrates effective applications of federated lea
叢書名稱Wireless Networks
圖書封面Titlebook: Communication Efficient Federated Learning for Wireless Networks;  Mingzhe Chen,Shuguang Cui Book 2024 The Editor(s) (if applicable) and Th
描述.This book provides a comprehensive study of?Federated Learning (FL) over wireless networks. It consists of?three main parts: (a) Fundamentals and preliminaries of?FL, (b) analysis and optimization of?FL over wireless networks, and (c) applications of wireless FL for Internet-of-Things systems. In particular, in the first part, the authors provide a detailed overview on widely-studied FL framework. In the?second part of?this book, the?authors comprehensively discuss three key wireless techniques including wireless resource management, quantization, and over-the-air computation to?support the?deployment of?FL over realistic wireless networks. It also presents several solutions based on?optimization theory, graph theory and machine learning to?optimize the?performance of?FL over wireless networks. In the?third part of?this book, the?authors introduce the?use of?wireless FL algorithms for autonomous vehicle control and mobile edge computing optimization.?.Machine learning and data-driven approaches have recently received considerable attention as key enablers for next-generation intelligent networks. Currently, most existing learning solutions for wireless networks rely on centralizin
出版日期Book 2024
關(guān)鍵詞Distributed learning; Federated learning; Resource Allocation; Quantization; Over the air computation; Au
版次1
doihttps://doi.org/10.1007/978-3-031-51266-7
isbn_softcover978-3-031-51268-1
isbn_ebook978-3-031-51266-7Series ISSN 2366-1186 Series E-ISSN 2366-1445
issn_series 2366-1186
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Communication Efficient Federated Learning for Wireless Networks影響因子(影響力)




書目名稱Communication Efficient Federated Learning for Wireless Networks影響因子(影響力)學(xué)科排名




書目名稱Communication Efficient Federated Learning for Wireless Networks網(wǎng)絡(luò)公開度




書目名稱Communication Efficient Federated Learning for Wireless Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Communication Efficient Federated Learning for Wireless Networks被引頻次




書目名稱Communication Efficient Federated Learning for Wireless Networks被引頻次學(xué)科排名




書目名稱Communication Efficient Federated Learning for Wireless Networks年度引用




書目名稱Communication Efficient Federated Learning for Wireless Networks年度引用學(xué)科排名




書目名稱Communication Efficient Federated Learning for Wireless Networks讀者反饋




書目名稱Communication Efficient Federated Learning for Wireless Networks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:22 | 只看該作者
Introduction,f the new . command for typesetting the text of the online abstracts (cf. source file of this chapter template .) and include them with the source files of your manuscript. Use the plain . command if the abstract is also to appear in the printed version of the book.
地板
發(fā)表于 2025-3-22 06:00:54 | 只看該作者
5#
發(fā)表于 2025-3-22 11:29:59 | 只看該作者
Federated Learning for Autonomous Vehicles Control,trollers or traditional learning-based controllers, solely trained by each CAV’s local data, cannot guarantee a robust controller performance over a wide range of road conditions and traffic dynamics.
6#
發(fā)表于 2025-3-22 14:24:17 | 只看該作者
https://doi.org/10.1007/978-3-030-25482-7ts, we introduce several optimization theory based methods for resource management aiming to optimize the wireless FL performance metrics. Finally, several simulations are implemented to demonstrate the performance of the designed FL.
7#
發(fā)表于 2025-3-22 19:59:36 | 只看該作者
8#
發(fā)表于 2025-3-22 22:16:01 | 只看該作者
9#
發(fā)表于 2025-3-23 04:28:47 | 只看該作者
10#
發(fā)表于 2025-3-23 08:13:02 | 只看該作者
978-3-031-51268-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常州市| 柘荣县| 威海市| 莱西市| 洛扎县| 罗定市| 乐清市| 上饶县| 文登市| 南充市| 汉川市| 达日县| 徐汇区| 乌拉特前旗| 来安县| 黑河市| 广河县| 吴堡县| 禄丰县| 旺苍县| 石城县| 和平区| 华阴市| 荆州市| 娱乐| 双柏县| 遵义市| 同江市| 昌乐县| 永胜县| 新乐市| 互助| 万荣县| 广昌县| 金门县| 定陶县| 鹰潭市| 秦皇岛市| 偃师市| 大田县| 武陟县|