找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics, Graph Theory and Computing; SEICCGTC 2020, Boca Frederick Hoffman Conference proceedings 2022 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: Jackson
31#
發(fā)表于 2025-3-26 23:59:52 | 只看該作者
32#
發(fā)表于 2025-3-27 01:21:09 | 只看該作者
Mutig Ziele setzen und Entscheidungen f?llenan be determined by a .-sequence and an .-sequence. This is the row construction of the array. This is not the case for Double Riordan arrays. In this paper, we show that double Riordan arrays can be determined by two .-sequences and one .-sequence.
33#
發(fā)表于 2025-3-27 07:50:35 | 只看該作者
34#
發(fā)表于 2025-3-27 12:15:25 | 只看該作者
35#
發(fā)表于 2025-3-27 17:41:23 | 只看該作者
36#
發(fā)表于 2025-3-27 19:33:09 | 只看該作者
37#
發(fā)表于 2025-3-27 23:34:36 | 只看該作者
Examples of Edge Critical Graphs in Peg Solitaire,for this family. We show that infinite subsets of this family are edge critical. We also determine the maximum number of pegs that can be left on this family with the condition that a jump is made whenever possible. Finally, we give a list of graphs on eight vertices that are edge critical.
38#
發(fā)表于 2025-3-28 03:43:12 | 只看該作者
,Efficient and?Non-efficient Domination of?,-stacked Archimedean Lattices,he proofs of existence are constructive, and the proofs of non-existence are generated by integer programs. We find efficient dominating sets on seven of the stacked lattices and prove that no such sets exist on the other four stacked lattices.
39#
發(fā)表于 2025-3-28 06:42:32 | 只看該作者
,Regular Graph and?Some Vertex-Deleted Subgraph,teger such that ., and . be a minimum integer such that ., and . be an .-regular, .-edge-connected graph of odd order. Then, there is some . such that . has a .-factor. Moreover, if ., then we can replace .-edge-connected with 2-edge-connected.
40#
發(fā)表于 2025-3-28 11:04:26 | 只看該作者
Conference proceedings 2022d Computing (SEICCGTC 2020), held at Florida Atlantic University in Boca Raton, USA, on March 9-13, 2020. The SEICCGTC is broadly considered to be a trendsetter for other conferences around the world – many of the ideas and themes first discussed at it have subsequently been explored at other confer
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
措美县| 桦甸市| 北宁市| 忻城县| 平阳县| 湖州市| 鹰潭市| 竹山县| 广德县| 灌阳县| 台湾省| 汽车| 兴隆县| 崇义县| 星子县| 义乌市| 江源县| 同德县| 兴仁县| 江孜县| 寿宁县| 当涂县| 吉木乃县| 旺苍县| 北辰区| 古蔺县| 宿迁市| 海淀区| 监利县| 津市市| 云林县| 连江县| 清水县| 克什克腾旗| 武清区| 清远市| 堆龙德庆县| 屏南县| 开化县| 嘉兴市| 积石山|