找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics on Words; 13th International C Thierry Lecroq,Svetlana Puzynina Conference proceedings 2021 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: 戰(zhàn)神
51#
發(fā)表于 2025-3-30 10:15:36 | 只看該作者
52#
發(fā)表于 2025-3-30 16:26:18 | 只看該作者
Hadi Khabbaz,Yang Xiao,Jia-Ruey Changange Automaton Matcher, which turns out to be very fast in many practical cases. Despite our algorithm has a quadratic worst-case time complexity, experimental results show that it obtains in most cases the best running times when compared against the most effective automata based algorithms. In the
53#
發(fā)表于 2025-3-30 18:38:56 | 只看該作者
54#
發(fā)表于 2025-3-30 21:09:45 | 只看該作者
Continuants with Equal Values, a Combinatorial Approach, as a function defined on the set of all finite words on the alphabet . with values in the positive integers. Given a word . with . we define its multiplicity . as the number of times the value .(.) is assumed in the Abelian class . consisting of all permutations of the word .. We prove that there i
55#
發(fā)表于 2025-3-31 01:01:31 | 只看該作者
56#
發(fā)表于 2025-3-31 08:01:08 | 只看該作者
57#
發(fā)表于 2025-3-31 12:41:32 | 只看該作者
String Theories Involving Regular Membership Predicates: From Practice to Theory and Back,ich can be applied in this context, especially for real-world cases. Designing an algorithm for the (generally undecidable) satisfiability problem for systems of string constraints requires a thorough understanding of the structure of constraints present in the targeted cases. In this paper, we inve
58#
發(fā)表于 2025-3-31 16:56:41 | 只看該作者
Binary Cyclotomic Polynomials: Representation via Words and Algorithms,n of their order, and the binary case is thus the first nontrivial case. This paper sees the vector of coefficients of the polynomial as a word on a ternary alphabet .. It designs an efficient algorithm that computes a compact representation of this word. This algorithm is of linear time with respec
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 02:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇平县| 五指山市| 彩票| 鲁山县| 怀化市| 阿克| 中卫市| 长治市| 当涂县| 新乡市| 临漳县| 扶风县| 平安县| 永兴县| 长治市| 铜鼓县| 曲沃县| 天津市| 吉木乃县| 桃江县| 航空| 电白县| 阳曲县| 罗平县| 石屏县| 杭锦旗| 博白县| 阿瓦提县| 沐川县| 多伦县| 泉州市| 开江县| 奉化市| 临泽县| 长垣县| 田阳县| 潞西市| 应用必备| 五大连池市| 南华县| 康定县|