找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics on Words; 9th International Co Juhani Karhum?ki,Arto Lepist?,Luca Zamboni Conference proceedings 2013 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 討論小組
51#
發(fā)表于 2025-3-30 08:43:13 | 只看該作者
Smart Self-Correcting D/A Converters .?=?.. The new way to consider .-abelian .th powers is to say that a word is . if it is .-abelian equivalent to an .th power. We prove that strongly .-abelian .th powers are not avoidable on any alphabet for any numbers . and .. In the abelian case this is easy, but for .?>?1 the proof is not trivial.
52#
發(fā)表于 2025-3-30 13:32:46 | 只看該作者
https://doi.org/10.1007/978-3-030-04315-5amically equivalent to a given uniform morphism is finite, if the morphisms are one-to-one and if we ignore changes of alphabet. We will present the equivalence class of the Toeplitz morphism 0?→?01, 1?→?00. This is joint work with Ethan Coven and Mike Keane.
53#
發(fā)表于 2025-3-30 19:06:37 | 只看該作者
Shirumisha Kwayu,Banita Lal,Mumin Abubakre is considered, such family of word automata represent the worst case for the number of steps and for its overall time complexity. This fact suggests that the standard sturmian words, and consequently the associated word automata, are able to capture some properties for which the minimization process becomes inherently more complex.
54#
發(fā)表于 2025-3-31 00:21:34 | 只看該作者
Dynamical Equivalence of Morphismsamically equivalent to a given uniform morphism is finite, if the morphisms are one-to-one and if we ignore changes of alphabet. We will present the equivalence class of the Toeplitz morphism 0?→?01, 1?→?00. This is joint work with Ethan Coven and Mike Keane.
55#
發(fā)表于 2025-3-31 03:25:44 | 只看該作者
56#
發(fā)表于 2025-3-31 07:22:07 | 只看該作者
SpringerBriefs in Molecular Scienceinite words are then interpreted as representations of real numbers; the difference between the numbers represented by the maximal and minimal word associated with?. is called the span of?.. The preceding construction allows to characterise the topological closure of the set of spans.
57#
發(fā)表于 2025-3-31 11:14:08 | 只看該作者
58#
發(fā)表于 2025-3-31 14:42:32 | 只看該作者
59#
發(fā)表于 2025-3-31 21:31:12 | 只看該作者
Periodicity Forcing Wordsrmore, it is shown that there exist examples of periodicity forcing words which contain any given factor/prefix/suffix. Finally, an alternative class of mechanisms for generating periodicity forcing words is developed, resulting in a class of examples which contrast those known already.
60#
發(fā)表于 2025-3-31 22:27:53 | 只看該作者
0302-9743 natorics on Words, WORDS 2013, held in Turku, Finland, in September 2013 under the auspices of the EATCS. The 20 revised full papers presented were carefully reviewed and selected from 43 initial submissions. The central topic of the conference is combinatorics on words (i.e. the study of finite and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海伦市| 宾阳县| 南阳市| 宝兴县| 宁波市| 河北区| 博乐市| 泉州市| 广汉市| 贵州省| 和田市| 玉山县| 牟定县| 海淀区| 绥芬河市| 武安市| 中牟县| 富民县| 农安县| 吉安市| 长沙市| 措勤县| 安新县| 丰都县| 璧山县| 襄樊市| 杭州市| 榆树市| 浦江县| 瑞昌市| 汝南县| 监利县| 漯河市| 遂昌县| 金溪县| 保定市| 连南| 旬阳县| 调兵山市| 禹城市| 屏边|