找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics on Words; 9th International Co Juhani Karhum?ki,Arto Lepist?,Luca Zamboni Conference proceedings 2013 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 討論小組
41#
發(fā)表于 2025-3-28 16:30:34 | 只看該作者
42#
發(fā)表于 2025-3-28 20:21:25 | 只看該作者
43#
發(fā)表于 2025-3-29 02:53:37 | 只看該作者
44#
發(fā)表于 2025-3-29 03:51:05 | 只看該作者
Open and Closed Prefixes of Sturmian Wordspen. We deal with the sequence of open and closed prefixes of Sturmian words and prove that this sequence characterizes every finite or infinite Sturmian word up to isomorphisms of the alphabet. We then characterize the combinatorial structure of the sequence of open and closed prefixes of standard
45#
發(fā)表于 2025-3-29 07:20:31 | 只看該作者
46#
發(fā)表于 2025-3-29 12:38:44 | 只看該作者
47#
發(fā)表于 2025-3-29 19:06:41 | 只看該作者
Similarity Relations and Repetition-Freenessive an overview of the results concerning repetition-freeness in connection with similarity relations. We consider so called chain relations, cyclic relations and partial words, which can be seen as a special case of similarity relations. As a new result, we prove that local 3.-repetitions can be av
48#
發(fā)表于 2025-3-29 21:44:47 | 只看該作者
49#
發(fā)表于 2025-3-30 03:55:42 | 只看該作者
50#
發(fā)表于 2025-3-30 05:32:01 | 只看該作者
LoRaWan: Low Cost Solution for Smart Citiesuffix code, then there exists a mapping . such that . is a topological dynamical system and . is a conjugacy. We call . the . of (., .). Furthermore, in the special case when . is the Fibonacci or the Thue-Morse morphism, we show that . is a sofic shift, that is, the language of . is regular.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清丰县| 太谷县| 邓州市| 福海县| 温州市| 巢湖市| 武宣县| 修文县| 枣强县| 通山县| 常熟市| 长子县| 峨边| 万山特区| 修文县| 滁州市| 望奎县| 肥乡县| 高清| 尼木县| 江北区| 淮滨县| 平湖市| 梅州市| 庆元县| 屏边| 东兰县| 吴桥县| 盐津县| 辽宁省| 炎陵县| 石景山区| 安吉县| 团风县| 乌什县| 讷河市| 长子县| 敦化市| 察雅县| 图片| 萝北县|