找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics and Finite Geometry; Steven T. Dougherty Textbook 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: GUST
11#
發(fā)表于 2025-3-23 13:01:10 | 只看該作者
Automorphism Groups,tructure is a group. It is generally the first structure one encounters in studying abstract algebra. We shall begin with a very elementary study of finite groups, and then we shall study the groups associated with various combinatorial structures.
12#
發(fā)表于 2025-3-23 15:46:32 | 只看該作者
13#
發(fā)表于 2025-3-23 18:42:56 | 只看該作者
Sèmévo Ida Tognisse,Jules Degilatructure is a group. It is generally the first structure one encounters in studying abstract algebra. We shall begin with a very elementary study of finite groups, and then we shall study the groups associated with various combinatorial structures.
14#
發(fā)表于 2025-3-23 23:38:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:36:31 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:45 | 只看該作者
Anuj Gupta,Kapil Gupta,Sumit SarohaThis chapter describes mutually orthogonal Latin squares by beginning with their origins in the 36 officer problem. It describes the major open problems concerning Latin squares. Further results are given describing the structure of Latin squares.
17#
發(fā)表于 2025-3-24 11:28:30 | 只看該作者
D. N. Katole,M. B. Daigavane,P. M. DaigavaneThis chapter gives fundamental results on finite affine and projective planes. It provides detailed proofs on various counting results concerning these planes such as the number of points, lines, points on a line, and lines through a point. It describes the canonical relation between affine planes and mutually orthogonal Latin squares.
18#
發(fā)表于 2025-3-24 17:31:28 | 只看該作者
Rashmi Ashok Panherkar,Prajakta VaidyaChapter 5 gives foundational results on graph theory including a study of simple and directed graphs. It investigates the coloring of graphs and the connection between directed graphs and relations.
19#
發(fā)表于 2025-3-24 23:03:22 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵武市| 历史| 大厂| 绍兴县| 莱西市| 荣成市| 固镇县| 太和县| 巴东县| 海晏县| 兴安盟| 库尔勒市| 永登县| 平定县| 吴江市| 手游| 长垣县| 台湾省| 尉氏县| 临夏县| 高安市| 民丰县| 宁明县| 将乐县| 通化市| 东乡族自治县| 上饶市| 绥棱县| 木里| 丽水市| 高密市| 邢台县| 延长县| 南充市| 新竹县| 郎溪县| 兴山县| 炉霍县| 雷山县| 房产| 溧阳市|