找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics; A Problem-Based Appr Pavle Mladenovi? Textbook 2019 Springer Nature Switzerland AG 2019 enumerative combinatorics.designs an

[復(fù)制鏈接]
查看: 9229|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:32:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Combinatorics
副標題A Problem-Based Appr
編輯Pavle Mladenovi?
視頻videohttp://file.papertrans.cn/231/230038/230038.mp4
概述Includes more than 300 exercises.Useful for graduate students and for researchers that apply combinatorial methods in different areas and levels of difficulty.Provides a theoretical background for sev
叢書名稱Problem Books in Mathematics
圖書封面Titlebook: Combinatorics; A Problem-Based Appr Pavle Mladenovi? Textbook 2019 Springer Nature Switzerland AG 2019 enumerative combinatorics.designs an
描述.This text provides a theoretical background for several topics in combinatorial mathematics, such as enumerative combinatorics (including partitions and Burnside‘s lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of each chapter, and more than 130 additional challenging problems, including problems from mathematical olympiads. Solutions or hints to all exercises and problems are included. The book can be used by secondary school students preparing for mathematical competitions, by their instructors, and by undergraduate students. The book may also be useful for graduate students and for researchers that apply combinatorial methods in different areas..
出版日期Textbook 2019
關(guān)鍵詞enumerative combinatorics; designs and configurations; graph theory; extremal combinatorics; mathematica
版次1
doihttps://doi.org/10.1007/978-3-030-00831-4
isbn_ebook978-3-030-00831-4Series ISSN 0941-3502 Series E-ISSN 2197-8506
issn_series 0941-3502
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Combinatorics影響因子(影響力)




書目名稱Combinatorics影響因子(影響力)學科排名




書目名稱Combinatorics網(wǎng)絡(luò)公開度




書目名稱Combinatorics網(wǎng)絡(luò)公開度學科排名




書目名稱Combinatorics被引頻次




書目名稱Combinatorics被引頻次學科排名




書目名稱Combinatorics年度引用




書目名稱Combinatorics年度引用學科排名




書目名稱Combinatorics讀者反饋




書目名稱Combinatorics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:32:01 | 只看該作者
地板
發(fā)表于 2025-3-22 07:07:43 | 只看該作者
5#
發(fā)表于 2025-3-22 09:24:53 | 只看該作者
Textbook 2019and Burnside‘s lemma), magic and Latin squares, graph theory, extremal combinatorics, mathematical games and elementary probability. A number of examples are given with explanations while the book also provides more than 300 exercises of different levels of difficulty that are arranged at the end of
6#
發(fā)表于 2025-3-22 16:39:56 | 只看該作者
7#
發(fā)表于 2025-3-22 19:51:50 | 只看該作者
Arrangements, Permutations, and Combinations,ements of the finite sets considered, for example, by taking sequences of the elements that belong to some sets or by taking subsets. In this chapter we shall define these combinatorial configurations and provide some examples and exercises.
8#
發(fā)表于 2025-3-22 21:54:00 | 只看該作者
9#
發(fā)表于 2025-3-23 03:29:22 | 只看該作者
10#
發(fā)表于 2025-3-23 08:09:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安宁市| 神木县| 镇宁| 崇左市| 英德市| 鸡泽县| 洛宁县| 嘉兴市| 玉屏| 综艺| 犍为县| 苍梧县| 华坪县| 桐庐县| 礼泉县| 徐水县| 昌图县| 固镇县| 秭归县| 大余县| 南丰县| 长葛市| 图们市| 三原县| 临猗县| 武平县| 凤庆县| 东光县| 修武县| 临清市| 大渡口区| 深州市| 瑞昌市| 阜南县| 河池市| 个旧市| 庄浪县| 翁源县| 调兵山市| 漯河市| 大竹县|