找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial and Geometric Group Theory; Dortmund and Ottawa- Oleg Bogopolski,Inna Bumagin,Enric Ventura Conference proceedings 2010 Birkh

[復(fù)制鏈接]
查看: 19720|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:00:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Combinatorial and Geometric Group Theory
副標(biāo)題Dortmund and Ottawa-
編輯Oleg Bogopolski,Inna Bumagin,Enric Ventura
視頻videohttp://file.papertrans.cn/231/230034/230034.mp4
概述Interesting articles about a very modern and active field of mathematics.Representation of different aspects of modern geometrical and combinatorial group theory: from group actions on spaces to algor
叢書名稱Trends in Mathematics
圖書封面Titlebook: Combinatorial and Geometric Group Theory; Dortmund and Ottawa- Oleg Bogopolski,Inna Bumagin,Enric Ventura Conference proceedings 2010 Birkh
出版日期Conference proceedings 2010
關(guān)鍵詞Group theory; algebraic geometry; combinatorics; geometric group theory; graphs
版次1
doihttps://doi.org/10.1007/978-3-7643-9911-5
isbn_ebook978-3-7643-9911-5Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
copyrightBirkh?user Basel 2010
The information of publication is updating

書目名稱Combinatorial and Geometric Group Theory影響因子(影響力)




書目名稱Combinatorial and Geometric Group Theory影響因子(影響力)學(xué)科排名




書目名稱Combinatorial and Geometric Group Theory網(wǎng)絡(luò)公開(kāi)度




書目名稱Combinatorial and Geometric Group Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Combinatorial and Geometric Group Theory被引頻次




書目名稱Combinatorial and Geometric Group Theory被引頻次學(xué)科排名




書目名稱Combinatorial and Geometric Group Theory年度引用




書目名稱Combinatorial and Geometric Group Theory年度引用學(xué)科排名




書目名稱Combinatorial and Geometric Group Theory讀者反饋




書目名稱Combinatorial and Geometric Group Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:30:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:11:10 | 只看該作者
地板
發(fā)表于 2025-3-22 08:16:43 | 只看該作者
Solving Random Equations in Garside Groups Using Length Functions,uched in earlier expositions. We then focus on the main ingredient in these attacks: Length functions..After a self-contained introduction to Garside groups, we describe length functions induced by the greedy normal form and by the rational normal form in these groups, and compare their worst-case p
5#
發(fā)表于 2025-3-22 11:53:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:22:47 | 只看該作者
7#
發(fā)表于 2025-3-22 21:01:37 | 只看該作者
The ,,-action on the Product of the Two Limit Trees for an Iwip Automorphism, .+(.) × .+(..) of the (non-simplicial) forward limit ?-trees for . and .., is properly discontinuous. Alternative proofs, derived from deeper results, have been given by Bestvina-Feighn-Handel [.] and later by Levitt-Lustig [.]; compare also Guirardel [.].
8#
發(fā)表于 2025-3-22 23:40:02 | 只看該作者
9#
發(fā)表于 2025-3-23 04:43:30 | 只看該作者
10#
發(fā)表于 2025-3-23 07:06:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐源县| 宝山区| 柳江县| 伊金霍洛旗| 织金县| 玛纳斯县| 米易县| 开平市| 安新县| 沽源县| 厦门市| 新和县| 布尔津县| 沿河| 中阳县| 乾安县| 阳曲县| 霸州市| 清河县| 扎赉特旗| 静宁县| 五河县| 凭祥市| 淳安县| 张家川| 彭阳县| 壤塘县| 新龙县| 北京市| 淳化县| 临沧市| 越西县| 商河县| 四平市| 文山县| 静乐县| 红河县| 东城区| 泗洪县| 宜兰县| 马尔康县|