找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial and Additive Number Theory IV; CANT, New York, USA, Melvyn B. Nathanson Conference proceedings 2021 The Editor(s) (if applica

[復(fù)制鏈接]
查看: 9503|回復(fù): 60
樓主
發(fā)表于 2025-3-21 18:11:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Combinatorial and Additive Number Theory IV
副標(biāo)題CANT, New York, USA,
編輯Melvyn B. Nathanson
視頻videohttp://file.papertrans.cn/231/230029/230029.mp4
概述Contains latest results by experts in the field.Surveys state-of-the-art open problems in combinatorial and additive number theory.Features a wide variety of topics
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Combinatorial and Additive Number Theory IV; CANT, New York, USA, Melvyn B. Nathanson Conference proceedings 2021 The Editor(s) (if applica
描述This is the fourth in a series of proceedings of the Combinatorial and Additive Number Theory (CANT) conferences, based on talks from the 2019 and 2020?workshops at the City University of New York. The latter was held online due to?the COVID-19 pandemic, and featured speakers from North and South America,?Europe, and Asia. The 2020 Zoom conference was the largest CANT conference in?terms of the number of both lectures and participants..These proceedings contain 25 peer-reviewed and edited papers on current topics?in number theory. Held every year since 2003 at the CUNY Graduate Center,?the workshop surveys state-of-the-art open problems in combinatorial and additive?number theory and related parts of mathematics. Topics featured in this volume?include sumsets, zero-sum sequences, minimal complements, analytic and prime?number theory, Hausdorff dimension, combinatorial and discrete geometry, and?Ramsey theory. This selection of articles will be of relevance to both researchers?and graduate students interested in current progress in number theory..
出版日期Conference proceedings 2021
關(guān)鍵詞semi-magic matrices; Wilf‘s conjecture; Skolem‘s conjecture; affine subspaces; Sidon set; automatic multi
版次1
doihttps://doi.org/10.1007/978-3-030-67996-5
isbn_softcover978-3-030-67998-9
isbn_ebook978-3-030-67996-5Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Combinatorial and Additive Number Theory IV影響因子(影響力)




書目名稱Combinatorial and Additive Number Theory IV影響因子(影響力)學(xué)科排名




書目名稱Combinatorial and Additive Number Theory IV網(wǎng)絡(luò)公開度




書目名稱Combinatorial and Additive Number Theory IV網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Combinatorial and Additive Number Theory IV被引頻次




書目名稱Combinatorial and Additive Number Theory IV被引頻次學(xué)科排名




書目名稱Combinatorial and Additive Number Theory IV年度引用




書目名稱Combinatorial and Additive Number Theory IV年度引用學(xué)科排名




書目名稱Combinatorial and Additive Number Theory IV讀者反饋




書目名稱Combinatorial and Additive Number Theory IV讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:00 | 只看該作者
A Conjectural Inequality for Visible Points in Lattice Parallelograms,nd straightforward) results for .(.,?.). The most interesting aspects of the paper are in Section 5 where we discuss some numerics and display some graphs of .(.,?.)/.. (These graphs resemble an integral sign that has been rotated counter-clockwise by ..) The numerics and graphs suggest the conjecture that for ., .(.,?.)/. satisfies the inequality
板凳
發(fā)表于 2025-3-22 03:56:39 | 只看該作者
Representing Sequence Subsums as Sumsets of Near Equal Sized Sets,result, or when applying sumset results to study . (e.g., [.]). We also give an extension increasing the flexibility of the aforementioned partitioning result and prove some stronger results when . is very large.
地板
發(fā)表于 2025-3-22 05:34:32 | 只看該作者
2194-1009 rial and discrete geometry, and?Ramsey theory. This selection of articles will be of relevance to both researchers?and graduate students interested in current progress in number theory..978-3-030-67998-9978-3-030-67996-5Series ISSN 2194-1009 Series E-ISSN 2194-1017
5#
發(fā)表于 2025-3-22 11:08:43 | 只看該作者
2194-1009 a wide variety of topicsThis is the fourth in a series of proceedings of the Combinatorial and Additive Number Theory (CANT) conferences, based on talks from the 2019 and 2020?workshops at the City University of New York. The latter was held online due to?the COVID-19 pandemic, and featured speakers
6#
發(fā)表于 2025-3-22 13:37:15 | 只看該作者
7#
發(fā)表于 2025-3-22 20:47:47 | 只看該作者
Intrinsic Characterization of Representation Functions and Generalizations,mber . lies or does not lie in ., and the counting function .(.), which gives the number of elements . of . satisfying .. We then generalize to representation functions as sums of more than two elements of ..
8#
發(fā)表于 2025-3-22 22:08:15 | 只看該作者
9#
發(fā)表于 2025-3-23 03:48:25 | 只看該作者
Conference proceedings 20210?workshops at the City University of New York. The latter was held online due to?the COVID-19 pandemic, and featured speakers from North and South America,?Europe, and Asia. The 2020 Zoom conference was the largest CANT conference in?terms of the number of both lectures and participants..These proc
10#
發(fā)表于 2025-3-23 07:12:01 | 只看該作者
Vytautas ?tuikys,Renata Burbait?show that such pairs exist and give the first explicit construction of these pairs. The constructions also satisfy a number of algebraic properties. Further, we prove that for any ., the group . admits infinitely many automorphisms such that for each such automorphism ., there exists a subset . of . such that . and . form a co-minimal pair.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沈阳市| 瓮安县| 玉环县| 都昌县| 霸州市| 乐清市| 兴义市| 东海县| 阿拉尔市| 肇东市| 惠水县| 原平市| 雷波县| 南汇区| 遂溪县| 吴桥县| 东乌珠穆沁旗| 花垣县| 图木舒克市| 蓝山县| 改则县| 瑞安市| 建瓯市| 邵东县| 宜宾县| 电白县| 乐安县| 义马市| 宜丰县| 辽宁省| 乐亭县| 盘锦市| 广灵县| 高平市| 鲁甸县| 临颍县| 新巴尔虎左旗| 东辽县| 洱源县| 鄂尔多斯市| 额尔古纳市|