找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial and Additive Number Theory II; CANT, New York, NY, Melvyn B. Nathanson Conference proceedings 2017 Springer International Pu

[復(fù)制鏈接]
樓主: Concave
21#
發(fā)表于 2025-3-25 06:13:11 | 只看該作者
Melvyn B. NathansonCollates recent advances in combinatorial and additive number theory from distinguished mathematicians in the field.Points to future areas of research.All papers feature original, peer-reviewed conten
22#
發(fā)表于 2025-3-25 09:06:39 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/c/image/230027.jpg
23#
發(fā)表于 2025-3-25 15:31:52 | 只看該作者
Combinatorial and Additive Number Theory II978-3-319-68032-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
24#
發(fā)表于 2025-3-25 18:14:48 | 只看該作者
25#
發(fā)表于 2025-3-25 23:02:09 | 只看該作者
26#
發(fā)表于 2025-3-26 04:06:18 | 只看該作者
Evaluation Indicators for Smart Prison points of a certain polytope. We use this correspondence to prove combinatorial results about core partitions. For small values of ., we give formulas for the number of (.,?.)-core partitions corresponding to numerical semigroups. We also study the number of partitions with a given hook set.
27#
發(fā)表于 2025-3-26 04:39:25 | 只看該作者
Juan Manuel Jauregui Becker,Wessel W. Wits . times, or differing by less than .. We find results on their behavior and generating functions: more results for those simultaneously regular and distinct, fewest for those distinct and flat. We offer some conjectures in the area.
28#
發(fā)表于 2025-3-26 11:28:36 | 只看該作者
29#
發(fā)表于 2025-3-26 12:56:52 | 只看該作者
https://doi.org/10.1007/978-3-658-38236-0factor test. We also prove a partial converse of his non-primality test, based on a single congruence. Along the way we encounter Bachet, Bernoulli, Bézout, Euler, Fermat, Kummer, Lagrange, Lucas, Vandermonde, Waring, Wilson, Wolstenholme, and several contemporary mathematicians.
30#
發(fā)表于 2025-3-26 19:12:29 | 只看該作者
https://doi.org/10.1007/978-3-319-68032-3Additive number theory; Combinatorial number theory; Goldbach conjecture; Mathematics and computer scie
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰浩特市| 精河县| 太保市| 沙洋县| 宝坻区| 秭归县| 乌苏市| 珲春市| 鹰潭市| 乐安县| 长汀县| 瓦房店市| 许昌市| 湖北省| 弋阳县| 和田市| 西盟| 色达县| 宜都市| 湘潭市| 东兴市| 本溪市| 武穴市| 炉霍县| 靖远县| 汉寿县| 蓝山县| 岳阳市| 内黄县| 社旗县| 永城市| 东明县| 寿光市| 大名县| 云龙县| 乌拉特前旗| 江永县| 临泉县| 洛扎县| 军事| 白城市|