找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Theory; Martin Aigner Book 1979 Springer-Verlag New York Inc. 1979 Combinatorics.Counting.Finite.Lattice.Permutation.algebra

[復(fù)制鏈接]
樓主: mature
21#
發(fā)表于 2025-3-25 03:48:19 | 只看該作者
Combinatorial Order Theory, properties present in any poset, such as chains, antichains, matchings, etc. Typical problems to be considered are the determination of the minimal number of chains into which a finite poset can be decomposed or the existence of a matching between the points and copoints of a ranked poset. In fact,
22#
發(fā)表于 2025-3-25 09:49:40 | 只看該作者
Polina V. Stognii,Nikolay I. KhokhlovIt seems convenient to list at the outset a few items that will be used throughout the book.
23#
發(fā)表于 2025-3-25 13:41:14 | 只看該作者
24#
發(fā)表于 2025-3-25 16:17:11 | 只看該作者
Preliminaries,It seems convenient to list at the outset a few items that will be used throughout the book.
25#
發(fā)表于 2025-3-25 23:35:20 | 只看該作者
26#
發(fā)表于 2025-3-26 01:06:25 | 只看該作者
Combinatorial Theory978-1-4615-6666-3Series ISSN 0072-7830 Series E-ISSN 2196-9701
27#
發(fā)表于 2025-3-26 05:08:24 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:48 | 只看該作者
https://doi.org/10.1007/978-3-031-22580-2ds: Linear matroids, binary and regular matroids, graphic and transversal matroids. The emphasis lies here on the characterization of these matroids and on applications to concrete combinatorial problems.
29#
發(fā)表于 2025-3-26 16:07:14 | 只看該作者
Incidence Functions,ions and inversion formulae in an arbitrary poset. Our method of study will be to associate with the poset . an algebraic object called the incidence algebra . (.), and to investigate its structure and subobjects.
30#
發(fā)表于 2025-3-26 18:54:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平潭县| 汝阳县| 泰和县| 友谊县| 青海省| 贞丰县| 日喀则市| 延川县| 松原市| 庄浪县| 东山县| 日照市| 麟游县| 新宾| 邯郸县| 瑞昌市| 石台县| 靖宇县| 颍上县| 敦化市| 南城县| 丰镇市| 苗栗市| 大英县| 清涧县| 渭源县| 绵阳市| 九江县| 昂仁县| 会东县| 新乡县| 东宁县| 从江县| 综艺| 鹤山市| 乡宁县| 北碚区| 临泉县| 兖州市| 香格里拉县| 云南省|