找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Set Theory of C*-algebras; Ilijas Farah Book 2019 Springer Nature Switzerland AG 2019 C*-algebras.Calkin algebra.combinatori

[復(fù)制鏈接]
樓主: NERVE
31#
發(fā)表于 2025-3-26 22:45:00 | 只看該作者
32#
發(fā)表于 2025-3-27 03:57:32 | 只看該作者
Yi Wang,Qixin Chen,Chongqing Kangns. We prove the Kadison Transitivity Theorem and its generalization due to Glimm–Kadison. After studying pure states and equivalence relations on the space of pure states of a C.-algebra (unitary/spatial equivalence and conjugacy by an automorphism), we conclude with a study of the second dual of a C.-algebra.
33#
發(fā)表于 2025-3-27 09:03:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:08:39 | 只看該作者
Anforderungen aus dem BSI Schutzprofilnd pure states of a C.-algebra. The maximal quantum filters are used to study extensions of pure states. The chapter concludes with a proof of the Kishiomoto–Ozawa–Sakai theorem on the homogeneity of the pure state space of separable C.-algebras.
35#
發(fā)表于 2025-3-27 16:08:53 | 只看該作者
Examples and Constructions of ,-algebrasgebras and .-homomorphisms between them are classified by Bratteli diagrams. Universal C.-algebras given by generators and relations are studied in some detail. After a discussion of automorphisms of C.-algebras, we conclude with a section on C.-algebras of real rank zero.
36#
發(fā)表于 2025-3-27 20:36:50 | 只看該作者
Representations of ,-algebrasns. We prove the Kadison Transitivity Theorem and its generalization due to Glimm–Kadison. After studying pure states and equivalence relations on the space of pure states of a C.-algebra (unitary/spatial equivalence and conjugacy by an automorphism), we conclude with a study of the second dual of a C.-algebra.
37#
發(fā)表于 2025-3-28 00:42:19 | 只看該作者
Tracial States and Representations of ,-algebras. We give basic norm estimates for the elements of a group algebra and present basics of Powers groups and criteria for simplicity of reduced group C.-algebras. The chapter concludes with a study of normalizers of diffuse masas.
38#
發(fā)表于 2025-3-28 02:10:20 | 只看該作者
39#
發(fā)表于 2025-3-28 08:40:03 | 只看該作者
40#
發(fā)表于 2025-3-28 11:48:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵丘县| 广宁县| 沾化县| 烟台市| 孟津县| 湖南省| 页游| 光山县| 三江| 襄城县| 新宁县| 林州市| 新郑市| 长丰县| 塔河县| 朝阳县| 东乌珠穆沁旗| 土默特右旗| 尖扎县| 扶风县| 双鸭山市| 黄大仙区| 清水县| 钦州市| 增城市| 左权县| 福贡县| 巨野县| 柏乡县| 达孜县| 晋州市| 盐亭县| 互助| 武胜县| 邢台县| 和林格尔县| 乐至县| 白河县| 革吉县| 丘北县| 乌海市|