找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Set Theory; With a Gentle Introd Lorenz J. Halbeisen Book 2017Latest edition Springer International Publishing AG 2017 axiom

[復(fù)制鏈接]
查看: 21582|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:45:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Combinatorial Set Theory
副標(biāo)題With a Gentle Introd
編輯Lorenz J. Halbeisen
視頻videohttp://file.papertrans.cn/231/230015/230015.mp4
概述Provides a comprehensive introduction to the sophisticated technique of forcing.Includes Shelah’s astonishing construction of a model in which exactly 27 Ramsey ultrafilters exist.Offers topics and op
叢書(shū)名稱(chēng)Springer Monographs in Mathematics
圖書(shū)封面Titlebook: Combinatorial Set Theory; With a Gentle Introd Lorenz J. Halbeisen Book 2017Latest edition Springer International Publishing AG 2017 axiom
描述This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory..Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters..Written for graduate students in axiomatic set theory, .Combinatorial Set Theory. will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is su
出版日期Book 2017Latest edition
關(guān)鍵詞axiom of choice; Banach-Tarski paradox; cardinal characteristics; combinatorics of forcing; forcing cons
版次2
doihttps://doi.org/10.1007/978-3-319-60231-8
isbn_softcover978-3-319-86812-7
isbn_ebook978-3-319-60231-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書(shū)目名稱(chēng)Combinatorial Set Theory影響因子(影響力)




書(shū)目名稱(chēng)Combinatorial Set Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Combinatorial Set Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Combinatorial Set Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Combinatorial Set Theory被引頻次




書(shū)目名稱(chēng)Combinatorial Set Theory被引頻次學(xué)科排名




書(shū)目名稱(chēng)Combinatorial Set Theory年度引用




書(shū)目名稱(chēng)Combinatorial Set Theory年度引用學(xué)科排名




書(shū)目名稱(chēng)Combinatorial Set Theory讀者反饋




書(shū)目名稱(chēng)Combinatorial Set Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:51:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:30:49 | 只看該作者
地板
發(fā)表于 2025-3-22 05:57:31 | 只看該作者
Models of Set Theory with Atoms another one in which a cardinal . exists such that .. These somewhat strange models are constructed like models of . (see the cumulative hierarchy introduced in Chap.?.). However, instead of starting with the empty set (in order to build the cumulative hierarchy) we start with a set of . and define
5#
發(fā)表于 2025-3-22 09:19:52 | 只看該作者
6#
發(fā)表于 2025-3-22 15:03:09 | 只看該作者
The Shattering Number Revisitedng matrix. However, like other cardinal characteristics, . has different facets. In this chapter we shall see that . is closely related to the ., a combinatorial property of subsets of . (discussed at the end of Chap.?.) which can be regarded as a generalisation of ..
7#
發(fā)表于 2025-3-22 21:01:18 | 只看該作者
8#
發(fā)表于 2025-3-22 21:31:44 | 只看該作者
Coda: A Dual Form of Ramsey’s Theorem by the following fact: Each infinite subset of . corresponds to the . of an . function from . into ., whereas each infinite partition of . corresponds to the set of . of elements of . of a . function from . onto .. Similarly, .-element subsets of . correspond to images of injective functions from .
9#
發(fā)表于 2025-3-23 02:57:09 | 只看該作者
The Idea of Forcingto .. In fact, starting from a model of ., Cohen constructed in 1962 models of . in which the . fails as well as models of . in which the . fails. On the other hand, starting from a model of ., G?del constructed a model of . in which the . holds (. Chap.?6). By combining these results we find that t
10#
發(fā)表于 2025-3-23 07:01:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄平县| 灵寿县| 剑河县| 湖口县| 衡阳县| 郓城县| 定陶县| 天津市| 尤溪县| 美姑县| 定日县| 思茅市| 金塔县| 涿州市| 昭觉县| 龙口市| 桦南县| 黄山市| 景宁| 申扎县| 凤冈县| 钟祥市| 淮北市| 喀喇| 古浪县| 巧家县| 洛阳市| 余干县| 襄汾县| 灵山县| 临漳县| 黄龙县| 安乡县| 灵石县| 乐昌市| 泽库县| 武清区| 华池县| 罗田县| 孝昌县| 淮安市|