找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Pattern Matching; 17th Annual Symposiu Moshe Lewenstein,Gabriel Valiente Conference proceedings 2006 Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: Johnson
41#
發(fā)表于 2025-3-28 16:28:00 | 只看該作者
42#
發(fā)表于 2025-3-28 20:42:19 | 只看該作者
43#
發(fā)表于 2025-3-29 02:55:35 | 只看該作者
Fingerprint Clustering with Bounded Number of Missing Valueste the hardness of these restricted versions of the problem, we show that the general clustering problem on an unbounded number of missing values such that they occur for every fixed position of an input vector in at most one fingerprint is polynomial time solvable.
44#
發(fā)表于 2025-3-29 05:43:17 | 只看該作者
45#
發(fā)表于 2025-3-29 11:15:08 | 只看該作者
46#
發(fā)表于 2025-3-29 12:50:22 | 只看該作者
Haibiao Liu,Zhihui Lai,Yudong Chenthat, for a variety of different definitions of “strong” binary motifs, the approximation ratio of sample-based algorithms converges to one exponentially fast in .. We also describe “very strong” motifs, for which the simple sample-based approach always identifies the correct motif, even for modest values of ..
47#
發(fā)表于 2025-3-29 15:46:34 | 只看該作者
Chirag Arora,Shyam S. Pattnaik,R. N. Baraltilable segment is {0, ..., .} as tiles whose smallest tilable segment is {0, ..., .}, for all strict divisors . of .. This enables us to exhibit an optimal linear time algorithm to compute for a given pattern the smallest segment that it tiles if any, as well as a recurrence formula for counting the tiles of a segment.
48#
發(fā)表于 2025-3-29 21:17:58 | 只看該作者
49#
發(fā)表于 2025-3-30 00:26:46 | 只看該作者
50#
發(fā)表于 2025-3-30 06:42:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 14:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂托克旗| 洛阳市| 普陀区| 海口市| 宁波市| 仙桃市| 外汇| 水城县| 龙游县| 清河县| 任丘市| 景洪市| 新宁县| 淮南市| 若羌县| 栾川县| 洱源县| 常德市| 从江县| 台中市| 龙岩市| 叙永县| 台北县| 恭城| 南昌市| 宜春市| 巫溪县| 灵武市| 丰镇市| 嫩江县| 普宁市| 云阳县| 英德市| 廉江市| 丰都县| 淮滨县| 南乐县| 焦作市| 兴国县| 依兰县| 桐城市|