找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization and Applications; 9th International Co Zaixin Lu,Donghyun Kim,Ding-Zhu Du Conference proceedings 2015 Springer I

[復制鏈接]
樓主: Encounter
21#
發(fā)表于 2025-3-25 04:09:44 | 只看該作者
22#
發(fā)表于 2025-3-25 10:47:03 | 只看該作者
23#
發(fā)表于 2025-3-25 15:14:26 | 只看該作者
Intelligentes Leben in der Stadt der Zukunfts of a given . are influenced; subsequently, at each round, the set of influenced nodes is augmented by all the nodes in the network that have a sufficiently large number of already influenced neighbors. The question is to determine a small subset of nodes . (.) that can influence the whole network.
24#
發(fā)表于 2025-3-25 17:17:17 | 只看該作者
25#
發(fā)表于 2025-3-25 22:28:25 | 只看該作者
26#
發(fā)表于 2025-3-26 03:39:20 | 只看該作者
27#
發(fā)表于 2025-3-26 07:48:03 | 只看該作者
Cyber Brittleness of Smart Cities time, one can derive polynomial algorithms for the problem, provided the cost function is monotonic or periodic. Finally, as an observation, we mention how polynomial time algorithms can be adapted with the objective of minimizing maximum lateness.
28#
發(fā)表于 2025-3-26 11:22:27 | 只看該作者
Richa Gupta,Saima Majid,Mohini Yadavem with axis-parallel squares, where . is the number of squares and side lengths of the squares vary from 1 to .. We also prove that when the given objects are unit-height rectangles, both the hitting set and set cover problems are .-complete. For the same set of objects, we prove that the independent set problem can be solved in polynomial time.
29#
發(fā)表于 2025-3-26 13:18:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:48:37 | 只看該作者
Directed Pathwidth and Palletizerstroduce a graph model for this problem, the so called sequence graph, which allows us to show that there is a processing of some list of sequences with at most . stack-up places if and only if the sequence graph of this list has directed pathwidth at most ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
射洪县| 瑞昌市| 西青区| 九寨沟县| 内乡县| 铜陵市| 天祝| 鹰潭市| 察隅县| 枝江市| 正阳县| 同江市| 纳雍县| 五华县| 彩票| 乐平市| 黄陵县| 集安市| 广河县| 弋阳县| 云南省| 泸溪县| 罗城| 边坝县| 齐齐哈尔市| 当涂县| 湟中县| 寿光市| 通渭县| 万载县| 霍城县| 根河市| 修水县| 谷城县| 宣化县| 方正县| 望江县| 高要市| 靖边县| 轮台县| 三河市|