找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization; Theory and Algorithm Bernhard Korte,Jens Vygen Textbook 20084th edition Springer-Verlag Berlin Heidelberg 2008

[復(fù)制鏈接]
樓主: 分期
41#
發(fā)表于 2025-3-28 15:52:57 | 只看該作者
42#
發(fā)表于 2025-3-28 21:17:34 | 只看該作者
43#
發(fā)表于 2025-3-28 23:10:30 | 只看該作者
Approximation Algorithms,In this chapter we introduce the important concept of approximation algorithms. So far we have dealt mostly with polynomially solvable problems. In the remaining chapters we shall indicate some strategies to cope with .-hard combinatorial optimization problems. Here approximation algorithms must be mentioned in the first place.
44#
發(fā)表于 2025-3-29 06:02:30 | 只看該作者
The Knapsack Problem,The . and the . discussed in earlier chapters are among the “hardest” problems for which a polynomial-time algorithm is known. In this chapter we deal with the following problem which turns out to be, in a sense, the “easiest” .-hard problem:
45#
發(fā)表于 2025-3-29 08:46:33 | 只看該作者
46#
發(fā)表于 2025-3-29 15:27:14 | 只看該作者
47#
發(fā)表于 2025-3-29 15:50:33 | 只看該作者
48#
發(fā)表于 2025-3-29 22:52:36 | 只看該作者
Springer Series in Materials Scienceextend . to the weighted case and shall again obtain an .(. .)-implementation. This algorithm has many applications, some of which are mentioned in the exercises and in Section 12.2. There are two basic formulations of the weighted matching problem:
49#
發(fā)表于 2025-3-30 03:00:17 | 只看該作者
50#
發(fā)表于 2025-3-30 05:44:16 | 只看該作者
Small Organic Molecules on Surfacesare also many important problems for which no polynomial-time algorithm is known. Although we cannot prove that none exists we can show that a polynomial-time algorithm for one “hard” (more precisely: .-hard) problem would imply a polynomialtime algorithm for almost all problems discussed in this book (more precisely: all .-easy problems).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景宁| 上林县| 淮滨县| 昌宁县| 南汇区| 黄山市| 乌拉特中旗| 平江县| 布拖县| 宁化县| 高雄市| 获嘉县| 荃湾区| 浮梁县| 车险| 中山市| 福州市| 囊谦县| 定结县| 襄垣县| 三台县| 本溪| 横峰县| 区。| 肥东县| 平远县| 南投市| 睢宁县| 远安县| 曲阜市| 平武县| 仁怀市| 托里县| 乌兰浩特市| 碌曲县| 五常市| 龙江县| 伊金霍洛旗| 诏安县| 宣恩县| 沭阳县|