找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization; Theory and Algorithm Bernhard Korte,Jens Vygen Textbook 20084th edition Springer-Verlag Berlin Heidelberg 2008

[復(fù)制鏈接]
樓主: 分期
41#
發(fā)表于 2025-3-28 15:52:57 | 只看該作者
42#
發(fā)表于 2025-3-28 21:17:34 | 只看該作者
43#
發(fā)表于 2025-3-28 23:10:30 | 只看該作者
Approximation Algorithms,In this chapter we introduce the important concept of approximation algorithms. So far we have dealt mostly with polynomially solvable problems. In the remaining chapters we shall indicate some strategies to cope with .-hard combinatorial optimization problems. Here approximation algorithms must be mentioned in the first place.
44#
發(fā)表于 2025-3-29 06:02:30 | 只看該作者
The Knapsack Problem,The . and the . discussed in earlier chapters are among the “hardest” problems for which a polynomial-time algorithm is known. In this chapter we deal with the following problem which turns out to be, in a sense, the “easiest” .-hard problem:
45#
發(fā)表于 2025-3-29 08:46:33 | 只看該作者
46#
發(fā)表于 2025-3-29 15:27:14 | 只看該作者
47#
發(fā)表于 2025-3-29 15:50:33 | 只看該作者
48#
發(fā)表于 2025-3-29 22:52:36 | 只看該作者
Springer Series in Materials Scienceextend . to the weighted case and shall again obtain an .(. .)-implementation. This algorithm has many applications, some of which are mentioned in the exercises and in Section 12.2. There are two basic formulations of the weighted matching problem:
49#
發(fā)表于 2025-3-30 03:00:17 | 只看該作者
50#
發(fā)表于 2025-3-30 05:44:16 | 只看該作者
Small Organic Molecules on Surfacesare also many important problems for which no polynomial-time algorithm is known. Although we cannot prove that none exists we can show that a polynomial-time algorithm for one “hard” (more precisely: .-hard) problem would imply a polynomialtime algorithm for almost all problems discussed in this book (more precisely: all .-easy problems).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塘沽区| 双流县| 霍林郭勒市| 鄂尔多斯市| 大邑县| 庆安县| 乾安县| 南川市| 于都县| 饶平县| 玉溪市| 化州市| 凤山市| 泸水县| 拜城县| 梨树县| 辰溪县| 安阳市| 丰顺县| 遂平县| 疏勒县| 垫江县| 兴安盟| 房产| 布尔津县| 大港区| 盈江县| 吉木乃县| 兴山县| 临邑县| 泾源县| 太康县| 枞阳县| 盐山县| 东山县| 锦州市| 江孜县| 巩义市| 顺平县| 北碚区| 鲁山县|