找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization; Theory and Algorithm Bernhard Korte,Jens Vygen Textbook 20084th edition Springer-Verlag Berlin Heidelberg 2008

[復(fù)制鏈接]
樓主: 分期
41#
發(fā)表于 2025-3-28 15:52:57 | 只看該作者
42#
發(fā)表于 2025-3-28 21:17:34 | 只看該作者
43#
發(fā)表于 2025-3-28 23:10:30 | 只看該作者
Approximation Algorithms,In this chapter we introduce the important concept of approximation algorithms. So far we have dealt mostly with polynomially solvable problems. In the remaining chapters we shall indicate some strategies to cope with .-hard combinatorial optimization problems. Here approximation algorithms must be mentioned in the first place.
44#
發(fā)表于 2025-3-29 06:02:30 | 只看該作者
The Knapsack Problem,The . and the . discussed in earlier chapters are among the “hardest” problems for which a polynomial-time algorithm is known. In this chapter we deal with the following problem which turns out to be, in a sense, the “easiest” .-hard problem:
45#
發(fā)表于 2025-3-29 08:46:33 | 只看該作者
46#
發(fā)表于 2025-3-29 15:27:14 | 只看該作者
47#
發(fā)表于 2025-3-29 15:50:33 | 只看該作者
48#
發(fā)表于 2025-3-29 22:52:36 | 只看該作者
Springer Series in Materials Scienceextend . to the weighted case and shall again obtain an .(. .)-implementation. This algorithm has many applications, some of which are mentioned in the exercises and in Section 12.2. There are two basic formulations of the weighted matching problem:
49#
發(fā)表于 2025-3-30 03:00:17 | 只看該作者
50#
發(fā)表于 2025-3-30 05:44:16 | 只看該作者
Small Organic Molecules on Surfacesare also many important problems for which no polynomial-time algorithm is known. Although we cannot prove that none exists we can show that a polynomial-time algorithm for one “hard” (more precisely: .-hard) problem would imply a polynomialtime algorithm for almost all problems discussed in this book (more precisely: all .-easy problems).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁化县| 江阴市| 仁怀市| 大兴区| 兰坪| 新昌县| 平果县| 彭阳县| 肃南| 南皮县| 东丽区| 嘉义县| 两当县| 筠连县| 双流县| 东阳市| 甘德县| 内黄县| 大名县| 双峰县| 江西省| 北川| 大新县| 锡林郭勒盟| 金阳县| 新巴尔虎左旗| 洛川县| 广德县| 德钦县| 沛县| 贵港市| 芦山县| 洛浦县| 于田县| 翼城县| 塔城市| 顺平县| 砀山县| 龙井市| 屏山县| 陆丰市|