找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization; Theory and Algorithm Bernhard Korte,Jens Vygen Textbook 20022nd edition Springer-Verlag Berlin Heidelberg 2002

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:06:55 | 只看該作者
32#
發(fā)表于 2025-3-27 04:50:07 | 只看該作者
Weighted Matching,Nonbipartite weighted matching appears to be one of the “hardest” combinatorial optimization problems that can be solved in polynomial time. We shall extend . to the weighted case and shall again obtain an .(..)-implementation. This algorithm has many applications, some of which are mentioned in the exercises and in Section 12.2.
33#
發(fā)表于 2025-3-27 08:14:47 | 只看該作者
34#
發(fā)表于 2025-3-27 10:10:41 | 只看該作者
35#
發(fā)表于 2025-3-27 15:23:36 | 只看該作者
The Knapsack Problem,The . and the . discussed in earlier chapters are among the “hardest” problems for which a polynomial-time algorithm is known. In this chapter we deal with the following problem which turns out to be, in a sense, the “easiest” .-hard problem
36#
發(fā)表于 2025-3-27 20:10:22 | 只看該作者
Bin-Packing,Suppose we have . objects, each of a given size, and some bins of equal capacity. We want to assign the objects to the bins, using as few bins as possible. Of course the total size of the objects assigned to one bin should not exceed its capacity.
37#
發(fā)表于 2025-3-27 22:52:25 | 只看該作者
38#
發(fā)表于 2025-3-28 03:37:48 | 只看該作者
39#
發(fā)表于 2025-3-28 09:11:43 | 只看該作者
,-Completeness,are also many important problems for which no polynomial-time algorithm is known. Although we cannot prove that none exists we can show that a polynomial-time algorithm for one “hard” (more precisely: .-hard) problem would imply a polynomial-time algorithm for almost all problems discussed in this book (more precisely: all .-easy problems).
40#
發(fā)表于 2025-3-28 13:25:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡阳市| 兴义市| 泰来县| 长泰县| 兴业县| 惠来县| 禹州市| 鄢陵县| 武邑县| 山丹县| 玉屏| 瑞安市| 仁布县| 阿坝县| 长泰县| 苍溪县| 怀仁县| 莱西市| 巫溪县| 宁夏| 饶平县| 房山区| 诏安县| 郁南县| 苗栗市| 柳河县| 缙云县| 凭祥市| 瑞丽市| 阿克| 文化| 彭水| 本溪| 卢龙县| 柳河县| 漠河县| 龙井市| 宣城市| 福安市| 淳安县| 连云港市|