找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization; Theory and Algorithm Bernhard Korte,Jens Vygen Textbook 20022nd edition Springer-Verlag Berlin Heidelberg 2002

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:06:55 | 只看該作者
32#
發(fā)表于 2025-3-27 04:50:07 | 只看該作者
Weighted Matching,Nonbipartite weighted matching appears to be one of the “hardest” combinatorial optimization problems that can be solved in polynomial time. We shall extend . to the weighted case and shall again obtain an .(..)-implementation. This algorithm has many applications, some of which are mentioned in the exercises and in Section 12.2.
33#
發(fā)表于 2025-3-27 08:14:47 | 只看該作者
34#
發(fā)表于 2025-3-27 10:10:41 | 只看該作者
35#
發(fā)表于 2025-3-27 15:23:36 | 只看該作者
The Knapsack Problem,The . and the . discussed in earlier chapters are among the “hardest” problems for which a polynomial-time algorithm is known. In this chapter we deal with the following problem which turns out to be, in a sense, the “easiest” .-hard problem
36#
發(fā)表于 2025-3-27 20:10:22 | 只看該作者
Bin-Packing,Suppose we have . objects, each of a given size, and some bins of equal capacity. We want to assign the objects to the bins, using as few bins as possible. Of course the total size of the objects assigned to one bin should not exceed its capacity.
37#
發(fā)表于 2025-3-27 22:52:25 | 只看該作者
38#
發(fā)表于 2025-3-28 03:37:48 | 只看該作者
39#
發(fā)表于 2025-3-28 09:11:43 | 只看該作者
,-Completeness,are also many important problems for which no polynomial-time algorithm is known. Although we cannot prove that none exists we can show that a polynomial-time algorithm for one “hard” (more precisely: .-hard) problem would imply a polynomial-time algorithm for almost all problems discussed in this book (more precisely: all .-easy problems).
40#
發(fā)表于 2025-3-28 13:25:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
分宜县| 昌乐县| 达日县| 中牟县| 睢宁县| 江源县| 安徽省| 玉龙| 兴义市| 庆阳市| 泌阳县| 泗洪县| 东兰县| 汾阳市| 抚州市| 贵港市| 北辰区| 鲁山县| 彭水| 樟树市| 永善县| 普兰县| 铁岭县| 许昌县| 文登市| 璧山县| 泸西县| 屯门区| 龙口市| 应城市| 德江县| 彝良县| 米易县| 东兴市| 湖南省| 乐昌市| 民县| 伊川县| 淮安市| 偃师市| 二连浩特市|