找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Matrix Theory and Generalized Inverses of Matrices; Ravindra B. Bapat,Steve J. Kirkland,Simo Puntanen Book 2013 Springer Ind

[復(fù)制鏈接]
樓主: melancholy
51#
發(fā)表于 2025-3-30 08:46:40 | 只看該作者
52#
發(fā)表于 2025-3-30 13:19:15 | 只看該作者
53#
發(fā)表于 2025-3-30 16:50:00 | 只看該作者
Matrix Product of Graphs,In this paper, we characterize the graphs . and . for which the product of the adjacency matrices .(.).(.) is graphical. We continue to define matrix product of two graphs and study a few properties of the same product. Further, we consider the case of regular graphs to study the graphical property of the product of adjacency matrices.
54#
發(fā)表于 2025-3-30 22:02:13 | 只看該作者
Inference in Error Orthogonal Models,Error Orthogonal Models constitute a very interesting class of models very useful in the design of experiments. The use of commutative Jordan algebras of symmetric matrices is used in order to perform statistical inference. The concept of segregation is introduced thus allowing the estimation of variance components.
55#
發(fā)表于 2025-3-31 03:29:03 | 只看該作者
56#
發(fā)表于 2025-3-31 05:36:51 | 只看該作者
Sliding on Clean (Dry) Surfaces,weighted directed graph is obtained. It is a generalization of the formula for the determinant of the Laplacian matrix of a mixed graph obtained by Bapat et al. (Linear Multilinear Algebra 46:299–312, .).
57#
發(fā)表于 2025-3-31 10:18:30 | 只看該作者
58#
發(fā)表于 2025-3-31 15:09:26 | 只看該作者
59#
發(fā)表于 2025-3-31 17:37:20 | 只看該作者
https://doi.org/10.1007/978-3-642-03448-0of writing a square matrix as a sum of idempotent matrices. Much work was done for real matrices and for matrices over other algebraic structures. We shall consider some of this work and present some new results for matrices over projective free rings.
60#
發(fā)表于 2025-3-31 23:26:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五大连池市| 平顺县| 正安县| 光泽县| 五寨县| 九龙县| 左云县| 南陵县| 云和县| 句容市| 深泽县| 门源| 米易县| 克什克腾旗| 蕲春县| 元阳县| 金寨县| 玉龙| 新邵县| 西盟| 扬中市| 夏邑县| 晋宁县| 集贤县| 玉屏| 福清市| 安岳县| 门头沟区| 青神县| 大埔区| 应城市| 新邵县| 英山县| 信阳市| 仁化县| 上饶市| 宝应县| 台北市| 元江| 滨海县| 抚松县|