找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Matrix Theory and Generalized Inverses of Matrices; Ravindra B. Bapat,Steve J. Kirkland,Simo Puntanen Book 2013 Springer Ind

[復(fù)制鏈接]
樓主: melancholy
31#
發(fā)表于 2025-3-26 22:31:19 | 只看該作者
An Illustrated Introduction to Some Old Magic Squares from India,s in the history and philosophy of magic squares and the related magic matrices and in the related bibliography and biographies. We try to illustrate our findings as much as possible and, whenever feasible, with images of postage stamps and other philatelic items.
32#
發(fā)表于 2025-3-27 03:58:56 | 只看該作者
33#
發(fā)表于 2025-3-27 08:22:31 | 只看該作者
34#
發(fā)表于 2025-3-27 09:33:04 | 只看該作者
35#
發(fā)表于 2025-3-27 17:10:54 | 只看該作者
Sliding on Clean (Dry) Surfaces,continues to be a . under .. We give a thorough proof of a result originally due to Mitra and Moore (Sankhyā, Ser. A 35:139–152, .). While doing this, we will review some useful properties of the proper eigenvalues in the spirit of Rao and Mitra?(Generalized Inverse of Matrices and Its Applications,
36#
發(fā)表于 2025-3-27 19:35:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:35:47 | 只看該作者
Hocine Imine,Leonid Fridman,Mohamed Djemaiained. The results are generalized to obtain the Moore–Penrose inverse of operators of the form .. Applications to nonnegativity of the Moore–Penrose inverse and operator partial orders are considered.
38#
發(fā)表于 2025-3-28 02:09:38 | 只看該作者
39#
發(fā)表于 2025-3-28 09:20:52 | 只看該作者
https://doi.org/10.1007/978-3-642-03448-0of writing a square matrix as a sum of idempotent matrices. Much work was done for real matrices and for matrices over other algebraic structures. We shall consider some of this work and present some new results for matrices over projective free rings.
40#
發(fā)表于 2025-3-28 12:14:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
科技| 沙洋县| 林芝县| 太康县| 黑河市| 岚皋县| 江川县| 类乌齐县| 岳池县| 江都市| 肇源县| 繁昌县| 花莲县| 察哈| 兴隆县| 衡南县| 沙田区| 达州市| 旺苍县| 磐石市| 城固县| 柳林县| 赞皇县| 厦门市| 万山特区| 尚义县| 东乡| 宜章县| 五台县| 津市市| 潼关县| 定安县| 临武县| 南昌市| 宁南县| 墨竹工卡县| 尖扎县| 阿拉善左旗| 武宁县| 沈阳市| 和林格尔县|