找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Matrix Theory; Richard A. Brualdi,ángeles Carmona,Dragan Stevanov Textbook 2018 Springer International Publishing AG, part o

[復制鏈接]
樓主: Boldfaced
11#
發(fā)表于 2025-3-23 12:35:25 | 只看該作者
12#
發(fā)表于 2025-3-23 17:52:58 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:53 | 只看該作者
14#
發(fā)表于 2025-3-23 22:41:55 | 只看該作者
Spectral Radius of Graphs,he adjacency matrix, which encodes existence of edges joining vertices of a graph. Knowledge of spectral properties of the adjacency matrix is often useful to describe graph properties which are related to the density of the graph’s edges, on either a global or a local level. For example, entries of
15#
發(fā)表于 2025-3-24 04:16:11 | 只看該作者
16#
發(fā)表于 2025-3-24 08:10:49 | 只看該作者
Boundary Value Problems on Finite Networks,h differs from others because the tools we use come from discrete potential theory, in which we have been working for a long period, trying to emulate as much as possible the continuous case. This chapter introduces this way of approximating a problem typical of matrix theory and offers an overview
17#
發(fā)表于 2025-3-24 12:08:59 | 只看該作者
Combinatorial Matrix Theory978-3-319-70953-6Series ISSN 2297-0304 Series E-ISSN 2297-0312
18#
發(fā)表于 2025-3-24 16:34:58 | 只看該作者
https://doi.org/10.1007/978-3-211-85782-3es. The presentation below draws heavily from Kirkland–Neumann [11, Ch. 7], and the interested reader can find further results on the topic in that book. We note that Molitierno [13] also covers some of the material presented in this chapter, and so serves as another source for readers interested in pursuing this subject further.
19#
發(fā)表于 2025-3-24 21:23:47 | 只看該作者
Richard A. Brualdi,ángeles Carmona,Dragan StevanovFocuses on permutation, alternating sign and tournament matrices.Includes an introduction to boundary value problems and related techniques on finite networks.Discusses applications of the group inver
20#
發(fā)表于 2025-3-25 00:25:56 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
班戈县| 鄂尔多斯市| 柳州市| 都昌县| 资中县| 凤阳县| 成安县| 德庆县| 隆安县| 太白县| 老河口市| 扶绥县| 陕西省| 屯留县| 腾冲县| 永福县| 油尖旺区| 濉溪县| 元谋县| 临清市| 牟定县| 天峻县| 招远市| 新郑市| 渝中区| 渭南市| 南昌市| 墨竹工卡县| 丁青县| 包头市| 聊城市| 汉川市| 新乡县| 珠海市| 吴旗县| 财经| 许昌市| 北碚区| 丰原市| 兰溪市| 津市市|