找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VIII; Proceedings of the E Kevin L. McAvaney Conference proceedings 1981 Springer-Verlag Berlin Heidelberg 1981 L

[復(fù)制鏈接]
樓主: incoherent
31#
發(fā)表于 2025-3-26 23:05:06 | 只看該作者
32#
發(fā)表于 2025-3-27 04:41:36 | 只看該作者
33#
發(fā)表于 2025-3-27 05:28:20 | 只看該作者
https://doi.org/10.1007/978-981-15-7175-6sion of the generation of graphs, digraphs, tournaments, self-complementary graphe, trees, and others. The present state of the art of graph generation is presented, together with some ideas on future prospects.
34#
發(fā)表于 2025-3-27 10:33:29 | 只看該作者
Stress and Sleepiness in the 24-h Societyogether in a well-behaved way we have a distributive block structure. We show that the orbits of the automorphism group of a distributive block structure on pairs of experimental units are precisely the sets which the combinatorial structure leads one to expect. Possible generalizations of this result are discussed.
35#
發(fā)表于 2025-3-27 16:18:07 | 只看該作者
36#
發(fā)表于 2025-3-27 17:49:03 | 只看該作者
37#
發(fā)表于 2025-3-28 01:23:43 | 只看該作者
38#
發(fā)表于 2025-3-28 04:57:12 | 只看該作者
Distributive block structures and their automorphisms,ogether in a well-behaved way we have a distributive block structure. We show that the orbits of the automorphism group of a distributive block structure on pairs of experimental units are precisely the sets which the combinatorial structure leads one to expect. Possible generalizations of this result are discussed.
39#
發(fā)表于 2025-3-28 07:36:06 | 只看該作者
A construction for a family of sets and its application to matroids,n applied to . then gives .. For each subset . of ., . for exactly one pair of .∈. and corresponding .∈.. When the family . is the basis collection of a matroid on . can be described simply in terms of the matroid structure. A polynomial is defined which, in this latter case, is the Tutte polynomial of the matroid.
40#
發(fā)表于 2025-3-28 10:57:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塔河县| 孝昌县| 平湖市| 兴义市| 西贡区| 哈尔滨市| 芜湖市| 行唐县| 沾化县| 广平县| 新津县| 渑池县| 高淳县| 分宜县| 长白| 义马市| 大竹县| 沂南县| 广汉市| 仪陇县| 吐鲁番市| 建昌县| 邹平县| 姜堰市| 河南省| 六安市| 隆昌县| 九寨沟县| 哈巴河县| 壶关县| 奇台县| 中卫市| 崇左市| 博白县| 华容县| 额尔古纳市| 称多县| 麻江县| 庄河市| 张家口市| 海晏县|