找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VII; Proceedings of the S Robert W. Robinson,George W. Southern,Walter D. Wa Conference proceedings 1980 Springer

[復(fù)制鏈接]
樓主: 審美家
31#
發(fā)表于 2025-3-26 22:15:33 | 只看該作者
Amnesic Effects of Lormetazepamock. The condition . (mod 3) is shown to be both necessary and sufficient for the existence of a BTD on . elements with block size 3 and index 2 in which each element is repeated in exactly one block and each element occurs in a constant number of blocks.
32#
發(fā)表于 2025-3-27 02:48:05 | 只看該作者
Amy S. Korwin,Melissa P. Knauertices. Let F(s) be the set of all finite sequences of non-negative integers which have a unique realisation in the set of all s-uniform hypergraphs, and let F(s.) be the corresponding set for s.-hypergraphs. Hakimi determined F(2), and F(s) can be derived from a result of Koren. Here we determine F(2
33#
發(fā)表于 2025-3-27 06:15:47 | 只看該作者
Melissa P. Knauert,Sairam Parthasarathyyet have identical interpoint distance distributions. In this paper we demonstrate a method for doing this with any set of points or figures and demonstrate the application of the finding to image processing studies.
34#
發(fā)表于 2025-3-27 11:10:37 | 只看該作者
F. Zorick,N. Kribbs,T. Roehrs,T. Rothme degree sequence are . if one can be obtained from the other by an elementary operation called switching. With this notion of adjacency we can regard distinct pseudographs with the same degree sequence as the vertices of a graph, called the . of that sequence. Some results concerning the nature of
35#
發(fā)表于 2025-3-27 14:04:30 | 只看該作者
36#
發(fā)表于 2025-3-27 19:29:58 | 只看該作者
37#
發(fā)表于 2025-3-27 21:57:43 | 只看該作者
38#
發(fā)表于 2025-3-28 03:58:21 | 只看該作者
39#
發(fā)表于 2025-3-28 09:57:30 | 只看該作者
40#
發(fā)表于 2025-3-28 11:55:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
托克逊县| 荣昌县| 儋州市| 江油市| 永泰县| 西乡县| 武城县| 宁乡县| 商洛市| 饶河县| 依安县| 盘锦市| 陵川县| 保德县| 科技| 元江| 芮城县| 石嘴山市| 务川| 深水埗区| 奈曼旗| 石台县| 博罗县| 都江堰市| 大城县| 即墨市| 汉中市| 大埔区| 米易县| 涪陵区| 柏乡县| 广宗县| 永丰县| 宁南县| 沭阳县| 禄丰县| 娱乐| 衢州市| 新蔡县| 都安| 平乡县|