找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VII; Proceedings of the S Robert W. Robinson,George W. Southern,Walter D. Wa Conference proceedings 1980 Springer

[復制鏈接]
樓主: 審美家
31#
發(fā)表于 2025-3-26 22:15:33 | 只看該作者
Amnesic Effects of Lormetazepamock. The condition . (mod 3) is shown to be both necessary and sufficient for the existence of a BTD on . elements with block size 3 and index 2 in which each element is repeated in exactly one block and each element occurs in a constant number of blocks.
32#
發(fā)表于 2025-3-27 02:48:05 | 只看該作者
Amy S. Korwin,Melissa P. Knauertices. Let F(s) be the set of all finite sequences of non-negative integers which have a unique realisation in the set of all s-uniform hypergraphs, and let F(s.) be the corresponding set for s.-hypergraphs. Hakimi determined F(2), and F(s) can be derived from a result of Koren. Here we determine F(2
33#
發(fā)表于 2025-3-27 06:15:47 | 只看該作者
Melissa P. Knauert,Sairam Parthasarathyyet have identical interpoint distance distributions. In this paper we demonstrate a method for doing this with any set of points or figures and demonstrate the application of the finding to image processing studies.
34#
發(fā)表于 2025-3-27 11:10:37 | 只看該作者
F. Zorick,N. Kribbs,T. Roehrs,T. Rothme degree sequence are . if one can be obtained from the other by an elementary operation called switching. With this notion of adjacency we can regard distinct pseudographs with the same degree sequence as the vertices of a graph, called the . of that sequence. Some results concerning the nature of
35#
發(fā)表于 2025-3-27 14:04:30 | 只看該作者
36#
發(fā)表于 2025-3-27 19:29:58 | 只看該作者
37#
發(fā)表于 2025-3-27 21:57:43 | 只看該作者
38#
發(fā)表于 2025-3-28 03:58:21 | 只看該作者
39#
發(fā)表于 2025-3-28 09:57:30 | 只看該作者
40#
發(fā)表于 2025-3-28 11:55:20 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 15:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
曲阜市| 洛南县| 民和| 无锡市| 湘潭市| 怀来县| 龙门县| 安顺市| 团风县| 文昌市| 宁城县| 临夏县| 丰宁| 宁南县| 阜城县| 苗栗县| 张家界市| 辉县市| 台北县| 宜宾市| 饶阳县| 新沂市| 婺源县| 治县。| 景谷| 巴南区| 台江县| 根河市| 延寿县| 靖西县| 台北市| 永城市| 平塘县| 忻城县| 罗甸县| 莒南县| 兴仁县| 鄢陵县| 桐庐县| 乐东| 秀山|