找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics II; Proceedings of the S Derek A. Holton Conference proceedings 1974 Springer-Verlag Berlin Heidelberg 1974 Count

[復制鏈接]
樓主: 投降
21#
發(fā)表于 2025-3-25 04:37:02 | 只看該作者
Sum-free sets, difference sets and cyclotomy,e set T such that S?T?G, we have S = T..Here we determine some sum-free cyclotomic classes in finite fields and from them, we construct new supplementary difference sets, association schemes and block designs. We also continue our study of locally maximal sum-free sets in groups of small orders and
22#
發(fā)表于 2025-3-25 10:20:05 | 只看該作者
Williamson matrices of even order,ter are four (1,-1) matrices A,B,C,D, of order m, which pairwise satisfy (i) MN. = NM., M,N ε {A,B,C,D}, and (ii) AA.+BB.+CC.+DD. = 4mI., where I is the identity matrix. Currently Williamson matrices are known to exist for all orders less than 100 except: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94
23#
發(fā)表于 2025-3-25 14:42:17 | 只看該作者
24#
發(fā)表于 2025-3-25 16:01:51 | 只看該作者
25#
發(fā)表于 2025-3-25 21:41:08 | 只看該作者
Lecture Notes in Mechanical Engineering stability coefficient of G is . (G) = . (G)/|V(G)|. Making use of the above concepts, we characterise unions and joins of graphs which are semi-stable and enumerate trees with given stability index. Finally we investigate the problem of finding graphs with a given rational number as stability coefficient.
26#
發(fā)表于 2025-3-26 02:11:30 | 只看該作者
27#
發(fā)表于 2025-3-26 08:21:54 | 只看該作者
Shiyang Wang,Zhen Liu,Qingbo Herties of unique Moore-Penrose inverse of an arbitrary Boolean relation matrix are examined in connection with partial order relation and three computational methods for the unique Moore-Penrose inverse for an arbitrary Boolean relation matrix is developed.
28#
發(fā)表于 2025-3-26 11:00:48 | 只看該作者
29#
發(fā)表于 2025-3-26 16:20:21 | 只看該作者
30#
發(fā)表于 2025-3-26 20:10:25 | 只看該作者
https://doi.org/10.1007/978-94-009-0925-0ATP; DNA; Nucleotide; RNA; biochemistry; skeleton; transcription
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安西县| 无为县| 涞水县| 临桂县| 怀远县| 林周县| 新建县| 栾川县| 晋城| 清河县| 闻喜县| 沁源县| 乌什县| 江门市| 崇仁县| 丹棱县| 安远县| 涟水县| 商洛市| 济源市| 梅河口市| 彭山县| 丰台区| 桐梓县| 葫芦岛市| 汉中市| 陈巴尔虎旗| 万山特区| 镇远县| 姚安县| 江城| 镶黄旗| 淄博市| 泗阳县| 安吉县| 汤原县| 新野县| 常山县| 彩票| 南木林县| 鄱阳县|