找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Machine Learning; A Rough Set Approach Mikhail Moshkov,Beata Zielosko Book 2011 Springer Berlin Heidelberg 2011 Combinatorial

[復(fù)制鏈接]
查看: 42705|回復(fù): 49
樓主
發(fā)表于 2025-3-21 18:22:51 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Combinatorial Machine Learning
副標(biāo)題A Rough Set Approach
編輯Mikhail Moshkov,Beata Zielosko
視頻videohttp://file.papertrans.cn/230/229924/229924.mp4
概述A rough set approach to combinatorial machine learning.Presents applications for supervised machine learning, discrete optimization, analysis of acyclic programs, fault diagnosis and pattern recogniti
叢書名稱Studies in Computational Intelligence
圖書封面Titlebook: Combinatorial Machine Learning; A Rough Set Approach Mikhail Moshkov,Beata Zielosko Book 2011 Springer Berlin Heidelberg 2011 Combinatorial
描述.Decision trees and decision rule systems are widely used in different applications.as algorithms for problem solving, as predictors, and as a way for.knowledge representation. Reducts play key role in the problem of attribute.(feature) selection. The aims of this book are (i) the consideration of the sets.of decision trees, rules and reducts; (ii) study of relationships among these.objects; (iii) design of algorithms for construction of trees, rules and reducts;.and (iv) obtaining bounds on their complexity. Applications for supervised.machine learning, discrete optimization, analysis of acyclic programs, fault.diagnosis, and pattern recognition are considered also. This is a mixture of.research monograph and lecture notes. It contains many unpublished results..However, proofs are carefully selected to be understandable for students..The results considered in this book can be useful for researchers in machine.learning, data mining and knowledge discovery, especially for those who are.working in rough set theory, test theory and logical analysis of data. The book.can be used in the creation of courses for graduate students..
出版日期Book 2011
關(guān)鍵詞Combinatorial Machine Learning; Computational Intelligence; Machine Learning; Rough Sets
版次1
doihttps://doi.org/10.1007/978-3-642-20995-6
isbn_softcover978-3-642-26901-1
isbn_ebook978-3-642-20995-6Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Berlin Heidelberg 2011
The information of publication is updating

書目名稱Combinatorial Machine Learning影響因子(影響力)




書目名稱Combinatorial Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Combinatorial Machine Learning網(wǎng)絡(luò)公開度




書目名稱Combinatorial Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Combinatorial Machine Learning被引頻次




書目名稱Combinatorial Machine Learning被引頻次學(xué)科排名




書目名稱Combinatorial Machine Learning年度引用




書目名稱Combinatorial Machine Learning年度引用學(xué)科排名




書目名稱Combinatorial Machine Learning讀者反饋




書目名稱Combinatorial Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:54 | 只看該作者
Sets of Tests, Decision Rules and Treessideration from decision tables with one-valued decisions. For simplicity, we deal mainly with decision tables containing only binary conditional attributes..This chapter is devoted to the study of the sets of tests (reducts), decision rules and trees. For tests and rules we concentrate on considera
板凳
發(fā)表于 2025-3-22 03:49:32 | 只看該作者
Bounds on Complexity of Tests, Decision Rules and Treesand tests..The chapter consists of three sections. In Sect. 3.1, we investigate lower bounds on the depth of decision trees, cardinality of tests and length of decision rules..Section 3.2 is devoted to the consideration of upper bounds on the minimum cardinality of tests and minimum depth of decisio
地板
發(fā)表于 2025-3-22 07:25:55 | 只看該作者
Algorithms for Construction of Tests, Decision Rules and Treesdinality, decision rules with minimum length, and decision trees with minimum depth. Unfortunately, all the three optimization problems are .-hard. So we consider not only exact but also approximate algorithms for optimization..The chapter consists of four sections. In Sect. 4.1, we study approximat
5#
發(fā)表于 2025-3-22 12:33:40 | 只看該作者
6#
發(fā)表于 2025-3-22 16:05:13 | 只看該作者
7#
發(fā)表于 2025-3-22 19:19:55 | 只看該作者
8#
發(fā)表于 2025-3-22 22:17:02 | 只看該作者
9#
發(fā)表于 2025-3-23 03:27:57 | 只看該作者
Decision Trees and Rules over Quasilinear Information Systemsptimization problems and analysis of acyclic programs in the basis .?=?{.?+?.,.???.,1;sign(.)}..Each problem over a linear information system can be represented in the following form. We take finite number of hyperplanes in the space ?.. These hyperplanes divide given part . of the space into domain
10#
發(fā)表于 2025-3-23 08:56:52 | 只看該作者
Recognition of Words and Diagnosis of FaultsIn the first case, we study both decision trees and complete systems of decision rules. In the second case, we restrict our consideration to decision trees..Proofs are too complicated to be considered in this chapter. However, we give some comments relative to the tools used in the proofs or ideas o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓬莱市| 招远市| 敦煌市| 临泽县| 酒泉市| 临沧市| 淮南市| 固镇县| 长葛市| 从江县| 晋州市| 布尔津县| 合肥市| 鹤岗市| 乳源| 耿马| 周至县| 望江县| 涟源市| 股票| 城口县| 亳州市| 拜城县| 乐陵市| 邮箱| 衡阳县| 招远市| 武定县| 遂平县| 尖扎县| 和田县| 江都市| 内丘县| 鄂托克旗| 安平县| 巴林左旗| 邵东县| 宁阳县| 库车县| 阿合奇县| 共和县|