找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Image Analysis; 10th International W Reinhard Klette,Jovi?a ?uni? Conference proceedings 2005 Springer-Verlag Berlin Heidelbe

[復(fù)制鏈接]
樓主: energy
41#
發(fā)表于 2025-3-28 16:47:30 | 只看該作者
42#
發(fā)表于 2025-3-28 21:58:37 | 只看該作者
Das Doppelspaltexperiment mit Elektronen,e., .. In this paper we show that that there are.3..1.(.. ·(..).).different (up to translations) digitizations of discs having the radius .. More formally,.#.(., (., .)) | ..... [0, 1).3..1.(.. ·(..).).The result is of an interest in the area of digital image processing because it describes (in, let
43#
發(fā)表于 2025-3-29 01:51:34 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:00 | 只看該作者
45#
發(fā)表于 2025-3-29 09:49:41 | 只看該作者
Der Kollaps der Wellenfunktion,A discretized rotation is the composition of an Euclidean rotation with the rounding operation. For 0 < . < ./4, we prove that the discretized rotation [ ..] is bijective if and only if there exists a positive integer . such as...The proof uses a particular subgroup of the torus ..
46#
發(fā)表于 2025-3-29 11:39:19 | 只看該作者
Convex Hulls in a 3-Dimensional SpaceThis paper describes a new algorithm of computing the convex hull of a 3-dimensional object. The convex hull generated by this algorithm is an abstract polyhedron being described by a new data structure, the cell list, suggested by one of the authors. The correctness of the algorithm is proved and experimental results are presented.
47#
發(fā)表于 2025-3-29 15:36:52 | 只看該作者
Characterization of Bijective Discretized RotationsA discretized rotation is the composition of an Euclidean rotation with the rounding operation. For 0 < . < ./4, we prove that the discretized rotation [ ..] is bijective if and only if there exists a positive integer . such as...The proof uses a particular subgroup of the torus ..
48#
發(fā)表于 2025-3-29 21:35:22 | 只看該作者
49#
發(fā)表于 2025-3-30 02:37:53 | 只看該作者
A Combinatorial Transparent Surface Modeling from Polarization Imagesltaneously uses the object’s symmetry, brewster angle, and degree of polarization to select accurate reference points. The reference points contain information about surface’s normals position and direction at near occluding boundary. We reconstruct rotationally symmetric objects by rotating these reference points.
50#
發(fā)表于 2025-3-30 06:41:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新田县| 黄骅市| 乌拉特后旗| 白沙| 新疆| 南木林县| 玉田县| 上高县| 定西市| 临泽县| 霸州市| 方正县| 三门县| 桦甸市| 仁怀市| 疏勒县| 犍为县| 洪湖市| 沽源县| 芒康县| 承德市| 简阳市| 嘉定区| 河北区| 雅江县| 花莲县| 云龙县| 农安县| 汉川市| 包头市| 克拉玛依市| 长乐市| 浦县| 沅江市| 桑植县| 祁东县| 寻甸| 辽宁省| 周至县| 青铜峡市| 井陉县|