找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Computational Biology of RNA; Pseudoknots and Neut Christian Reidys Book 2011 Springer Science+Business Media, LLC 2011 compu

[復(fù)制鏈接]
查看: 26239|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:39:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Combinatorial Computational Biology of RNA
副標(biāo)題Pseudoknots and Neut
編輯Christian Reidys
視頻videohttp://file.papertrans.cn/230/229899/229899.mp4
概述Presents new combinatorics and combinatorial structures and applies them to the study of RNA structures.Presents new results on pseudoknot RNA.Motivating introductory chapter.Includes supplementary ma
圖書封面Titlebook: Combinatorial Computational Biology of RNA; Pseudoknots and Neut Christian Reidys Book 2011 Springer Science+Business Media, LLC 2011 compu
描述In this monograph, new combinatorial and computational approaches in the study of RNA structures are presented which enhance both mathematics and computational biology. It begins with an introductory chapter, which motivates and sets the background of this research. In the following chapter, all the concepts are systematically developed. The reader will find* integration of more than forty research papers covering topics like, RSK-algorithm, reflection principle, singularity analysis and random graph theory* systematic presentation of the theory of pseudo-knotted RNA structures including their generating function, uniform generation as well as central and discrete limit theorems* computational biology of pseudo-knotted RNA structures, including dynamic programming paradigms and a new folding algorithm* analysis of neutral networks of pseudo knotted RNA structures and their random graph theory, including neutral paths, giant components and connectivityAll algorithms presented are freely available through springer.com and implemented in C. A proofs section at the end contains the necessary technicalities.This book will serve graduate students and researchers in the fields of discrete
出版日期Book 2011
關(guān)鍵詞computational biology; discrete mathematics; mathematical biology; pseudo knots; combinatorics
版次1
doihttps://doi.org/10.1007/978-0-387-76731-4
isbn_softcover978-1-4899-8147-9
isbn_ebook978-0-387-76731-4
copyrightSpringer Science+Business Media, LLC 2011
The information of publication is updating

書目名稱Combinatorial Computational Biology of RNA影響因子(影響力)




書目名稱Combinatorial Computational Biology of RNA影響因子(影響力)學(xué)科排名




書目名稱Combinatorial Computational Biology of RNA網(wǎng)絡(luò)公開度




書目名稱Combinatorial Computational Biology of RNA網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Combinatorial Computational Biology of RNA被引頻次




書目名稱Combinatorial Computational Biology of RNA被引頻次學(xué)科排名




書目名稱Combinatorial Computational Biology of RNA年度引用




書目名稱Combinatorial Computational Biology of RNA年度引用學(xué)科排名




書目名稱Combinatorial Computational Biology of RNA讀者反饋




書目名稱Combinatorial Computational Biology of RNA讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:58:25 | 只看該作者
NA.Motivating introductory chapter.Includes supplementary maIn this monograph, new combinatorial and computational approaches in the study of RNA structures are presented which enhance both mathematics and computational biology. It begins with an introductory chapter, which motivates and sets the ba
板凳
發(fā)表于 2025-3-22 00:42:17 | 只看該作者
地板
發(fā)表于 2025-3-22 07:06:44 | 只看該作者
Neutral networks,]. In [71] data on sequence to structure maps into RNA pseudoknot structures based on . are being presented. The above papers allow to contrast the random graph model with biophysical folding maps. Our presentation is based on the papers [105, 102, 103, 106].
5#
發(fā)表于 2025-3-22 09:52:09 | 只看該作者
https://doi.org/10.1007/978-3-642-68278-0Almost three decades ago Michael Waterman pioneered the combinatorics and prediction of the ribonucleic acid (RNA) secondary structures, a rather non-mainstream research field at the time.
6#
發(fā)表于 2025-3-22 14:57:57 | 只看該作者
7#
發(fā)表于 2025-3-22 18:48:00 | 只看該作者
8#
發(fā)表于 2025-3-22 23:00:21 | 只看該作者
https://doi.org/10.1007/978-3-642-68278-0In this chapter we develop the theory of .-noncrossing and .-noncrossing, .-canonical structures. We derive their generating functions and obtain their singularity analysis, which produces simple, asymptotic formulas for the numbers of various types of k-noncrossing s-canonical structures.
9#
發(fā)表于 2025-3-23 04:42:36 | 只看該作者
https://doi.org/10.1007/978-3-642-68280-3In this section we prove that .-noncrossing RNA structures can be generated efficiently with uniform probability. The results presented here are derived from [26] and are based on Section 2.1.
10#
發(fā)表于 2025-3-23 05:53:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁阳县| 三河市| 唐河县| 龙里县| 双鸭山市| 宜宾市| 惠来县| 尤溪县| 巴林右旗| 清水河县| 全州县| 滦平县| 九寨沟县| 漠河县| 四平市| 衡阳县| 文化| 云和县| 固始县| 黄平县| 黄骅市| 化隆| 诸城市| 封丘县| 聂拉木县| 青铜峡市| 阿克苏市| 昭苏县| 惠水县| 梁山县| 上饶县| 福州市| 五寨县| 新竹市| 当阳市| 五家渠市| 宿州市| 周至县| 华安县| 蓬安县| 甘德县|