找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Aspects of Scattering Amplitudes; Amplituhedra, T-dual Matteo Parisi Book 2023 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
查看: 13976|回復(fù): 40
樓主
發(fā)表于 2025-3-21 17:42:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes
副標(biāo)題Amplituhedra, T-dual
編輯Matteo Parisi
視頻videohttp://file.papertrans.cn/230/229893/229893.mp4
概述Connects Amplituhedra with the ever-expanding fields of cluster algebras and tropical geometry.Addresses both algebraic combinatorists and high energy physicists.Combines extensive introductions on bo
叢書(shū)名稱Springer Theses
圖書(shū)封面Titlebook: Combinatorial Aspects of Scattering Amplitudes; Amplituhedra, T-dual Matteo Parisi Book 2023 The Editor(s) (if applicable) and The Author(s
描述.This book is a significant contribution within and across High Energy Physics and Algebraic Combinatorics. It is at the forefront of the recent paradigm shift according to which physical observables emerge from geometry and combinatorics. It is the first book on the amplituhedron, which encodes the scattering amplitudes of N=4 Yang-Mills theory, a cousin of the theory of strong interactions of quarks and gluons. Amplituhedra are generalizations of polytopes inside the Grassmannian, and they build on the theory of total positivity and oriented matroids. This book unveils many new combinatorial structures of the amplituhedron and introduces a new important related object, the momentum amplituhedron. Moreover, the work pioneers the connection between amplituhedra, cluster algebras and tropical geometry. Combining extensive introductions with proofs and examples, it is a valuable resource for researchers investigating geometrical structures emerging from physics for some time to come..
出版日期Book 2023
關(guān)鍵詞Amplituhedron; On-shell Methods; Landau Singularities; Positive Tropical Grassmannian; Matroids and Posi
版次1
doihttps://doi.org/10.1007/978-3-031-41069-7
isbn_softcover978-3-031-41071-0
isbn_ebook978-3-031-41069-7Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes影響因子(影響力)




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes影響因子(影響力)學(xué)科排名




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes被引頻次




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes被引頻次學(xué)科排名




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes年度引用




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes年度引用學(xué)科排名




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes讀者反饋




書(shū)目名稱Combinatorial Aspects of Scattering Amplitudes讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:14:35 | 只看該作者
The Amplituhedron,mage of the positive Grassmannian . under a totally positive linear map. Regarded as a non-linear generalization of (cyclic) polytopes inside the Grassmannian, it is a semialgebraic set with beautiful and rich combinatorics. The . amplituhedron . encodes tree-level amplitudes in . SYM. The . amplitu
板凳
發(fā)表于 2025-3-22 00:55:43 | 只看該作者
地板
發(fā)表于 2025-3-22 06:31:35 | 只看該作者
T-Duality: The Hypersimplex Versus the Amplituhedron,ch is the moment map image of the positive Grassmannian . and has nice combinatorics in connection with matroid theory and tropical geometry. The second is the . . .—a 2.-dimensional semialgebraic set in . which is the image of the positive Grassmannian . under a linear map induced by a totally posi
5#
發(fā)表于 2025-3-22 09:21:58 | 只看該作者
6#
發(fā)表于 2025-3-22 13:25:32 | 只看該作者
7#
發(fā)表于 2025-3-22 19:15:34 | 只看該作者
8#
發(fā)表于 2025-3-23 01:12:59 | 只看該作者
9#
發(fā)表于 2025-3-23 05:28:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
驻马店市| 阿克陶县| 科尔| 穆棱市| 西乌珠穆沁旗| 谷城县| 株洲市| 本溪| 昌黎县| 诸暨市| 东源县| 隆昌县| 化州市| 岚皋县| 邯郸县| 江达县| 象州县| 唐河县| 阜宁县| 正定县| 军事| 盈江县| 台前县| 蛟河市| 广平县| 沙洋县| 南郑县| 堆龙德庆县| 溧阳市| 玛沁县| 福鼎市| 镇原县| 怀宁县| 陆良县| 曲麻莱县| 环江| 金湖县| 镇赉县| 黎城县| 乌拉特中旗| 兴仁县|