找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 25th International W Kratochvíl Jan,Mirka Miller,Dalibor Froncek Conference proceedings 2015 Springer Internation

[復制鏈接]
樓主: 相似
41#
發(fā)表于 2025-3-28 17:30:37 | 只看該作者
42#
發(fā)表于 2025-3-28 18:52:53 | 只看該作者
Computing Primitively-Rooted Squares and Runs in Partial Words,rings that cannot be extended further to the left or right. We show how to compute all the primitively-rooted squares in a given partial word, which is a sequence that may have undefined positions, called holes or wildcards, that match any letter of the alphabet over which the sequence is defined. W
43#
發(fā)表于 2025-3-28 23:57:01 | 只看該作者
44#
發(fā)表于 2025-3-29 04:47:33 | 只看該作者
45#
發(fā)表于 2025-3-29 09:35:39 | 只看該作者
Solving Matching Problems Efficiently in Bipartite Graphs,respectively, the number of vertices and the number of edges. We solve maxDMM for bipartite graphs, by providing an .-time algorithm. We design better algorithms for complete bipartite graphs, and . graphs. (Bisplit graphs are bipartite graphs with the nested neighborhood property.) Specifically, we
46#
發(fā)表于 2025-3-29 14:06:16 | 只看該作者
47#
發(fā)表于 2025-3-29 18:21:45 | 只看該作者
Reconfiguration of Vertex Covers in a Graph,ere exists a sequence of vertex covers of . which transforms . into . such that each vertex cover in the sequence is of cardinality at most . and is obtained from the previous one by either adding or deleting exactly one vertex. This problem is PSPACE-complete even for planar graphs. In this paper,
48#
發(fā)表于 2025-3-29 21:45:07 | 只看該作者
49#
發(fā)表于 2025-3-30 00:16:39 | 只看該作者
50#
發(fā)表于 2025-3-30 04:46:26 | 只看該作者
Profile-Based Optimal Matchings in the Student/Project Allocation Problem, order of preference. Each student can be assigned to at most one project and there are constraints on the maximum number of students that can be assigned to each project and lecturer. We seek matchings of students to projects that are optimal with respect to ., which is a vector whose .th component
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
四平市| 岱山县| 肇庆市| 兴文县| 宁德市| 定日县| 阿鲁科尔沁旗| 赤水市| 阜城县| 柳林县| 东宁县| 鹰潭市| 闵行区| 栖霞市| 江阴市| 高淳县| 桃园市| 迁安市| 南充市| 涪陵区| 马鞍山市| 黄山市| 台北市| 柞水县| 龙门县| 义马市| 兰考县| 麻江县| 珠海市| 溧水县| 浪卡子县| 阿克陶县| 德庆县| 牟定县| 定州市| 长治市| 右玉县| 辽中县| 白城市| 车致| 秦皇岛市|