找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 26th International W Zsuzsanna Lipták,William F. Smyth Conference proceedings 2016 Springer International Publish

[復(fù)制鏈接]
樓主: antihistamine
51#
發(fā)表于 2025-3-30 11:04:31 | 只看該作者
A New View on the Uncertainty Principle,robots operate in asynchronous cycles. In one cycle, a robot takes a snapshot of the current configuration (Look), decides whether to stay idle or to move to one of its neighbors (Compute), and in the latter case makes the computed move (Move). Cycles are performed asynchronously for each robot. The
52#
發(fā)表于 2025-3-30 16:06:38 | 只看該作者
53#
發(fā)表于 2025-3-30 18:33:23 | 只看該作者
54#
發(fā)表于 2025-3-30 22:48:34 | 只看該作者
55#
發(fā)表于 2025-3-31 02:42:59 | 只看該作者
M. Stefan,S. V. Nistor,D. Ghicaivated vertices or if at some point it had at least?. active neighbors, for a threshold?. that is identical for all vertices. A contagious set is a vertex set whose activation results with the entire graph being active. Let .(.,?.) be the size of a smallest contagious set in a graph .. We examine de
56#
發(fā)表于 2025-3-31 08:02:50 | 只看該作者
https://doi.org/10.1007/978-3-662-44479-5arising from model validation in the study of phylogenetic networks. It asks to determine whether or not a given network displays a given phylogenetic tree over the same leaf set. It is known to be .-complete in general. Whether or not it remains .-complete for stable networks is an open problem. We
57#
發(fā)表于 2025-3-31 11:20:32 | 只看該作者
M. Stefan,S. V. Nistor,D. Ghicais the minimum number of colors needed to make . rainbow connected. Along with its variants, which consider vertex colorings and/or so-called strong colorings, the rainbow connection number has been studied from both the algorithmic and graph-theoretic points of view..In this paper we present a rang
58#
發(fā)表于 2025-3-31 14:27:41 | 只看該作者
59#
發(fā)表于 2025-3-31 20:07:47 | 只看該作者
About Ungatherability of Oblivious and Asynchronous Robots on Anonymous Rings,ven and nine nodes. We present an exhaustive proof about the impossibility of designing a strategy that solves the gathering in the considered setting. The proof makes use of both theoretical and computer-assisted approaches. Despite the specific cases considered, the relevance of the provided proof
60#
發(fā)表于 2025-4-1 00:40:58 | 只看該作者
On the Complexity of Rainbow Coloring Problems,nbow coloring by saving a fixed number of colors from a trivial upper bound. Finally, we give a linear-time algorithm for computing the exact rainbow connection numbers for three variants of the problem on graphs of bounded vertex cover number.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
綦江县| 大竹县| 犍为县| 兰考县| 札达县| 娱乐| 长寿区| 泽库县| 台北县| 延吉市| 南木林县| 中宁县| 永兴县| 临朐县| 安新县| 云梦县| 获嘉县| 武义县| 德江县| 天津市| 云龙县| 泗水县| 观塘区| 海阳市| 西乡县| 潢川县| 伊金霍洛旗| 建始县| 如皋市| 阿图什市| 黄梅县| 青海省| 桐乡市| 金川县| 兰溪市| 富阳市| 台前县| 鲁山县| 康定县| 西华县| 汶上县|