找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 28th International W Ljiljana Brankovic,Joe Ryan,William F. Smyth Conference proceedings 2018 Springer Internatio

[復(fù)制鏈接]
樓主: legerdemain
41#
發(fā)表于 2025-3-28 17:58:13 | 只看該作者
Improved Complexity for Power Edge Set?Problem. We show that . remains .-hard in planar graphs with degree at most five. This result is extended to bipartite planar graphs with degree at most six. We also show that . is hard to approximate within a factor lower than . in the bipartite case (resp. .), unless ., (resp. under .). We also show that
42#
發(fā)表于 2025-3-28 22:12:06 | 只看該作者
43#
發(fā)表于 2025-3-29 00:18:43 | 只看該作者
44#
發(fā)表于 2025-3-29 03:39:55 | 只看該作者
Holes in 2-Convex Point Setsygon with . vertices from?. and no points of?. in its interior. For a positive integer ., a simple polygon?. is . if no straight line intersects the interior of?. in more than . connected components. A point set . is . if there exists an .-convex polygonization of ...Considering a typical Erd?s–Szek
45#
發(fā)表于 2025-3-29 09:14:02 | 只看該作者
46#
發(fā)表于 2025-3-29 15:10:57 | 只看該作者
47#
發(fā)表于 2025-3-29 18:46:35 | 只看該作者
On the Maximum Crossing Numberum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.
48#
發(fā)表于 2025-3-29 23:27:24 | 只看該作者
Approximation Results for the Incremental Knapsack Problemural assumption that each item can be packed in the first time period. For this variant, we discuss different approximation algorithms suited for any number of time periods and provide an algorithm with a constant approximation factor of . for the case with two periods.
49#
發(fā)表于 2025-3-30 01:32:24 | 只看該作者
50#
發(fā)表于 2025-3-30 07:22:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西宁市| 齐齐哈尔市| 永善县| 河西区| 浙江省| 高阳县| 琼结县| 五指山市| 城步| 鹤山市| 崇仁县| 太湖县| 金秀| 富源县| 三明市| 海兴县| 柯坪县| 呼玛县| 察雅县| 三门县| 张家港市| 旬阳县| 灌南县| 正安县| 沿河| 平定县| 惠州市| 简阳市| 策勒县| 陈巴尔虎旗| 珠海市| 永善县| 酉阳| 定西市| 肇源县| 鄱阳县| 枝江市| 大姚县| 洛浦县| 乐都县| 清涧县|