找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 30th International W Charles J. Colbourn,Roberto Grossi,Nadia Pisanti Conference proceedings 2019 Springer Nature

[復(fù)制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 13:25:21 | 只看該作者
Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs,exploiting their structural properties to improve and refine previous results. We also give hardness results for parameterized precolored versions of these problems, and a polynomial-time algorithm for . in proper interval graphs.
12#
發(fā)表于 2025-3-23 14:17:59 | 只看該作者
13#
發(fā)表于 2025-3-23 20:03:56 | 只看該作者
14#
發(fā)表于 2025-3-24 02:01:04 | 只看該作者
15#
發(fā)表于 2025-3-24 05:29:48 | 只看該作者
16#
發(fā)表于 2025-3-24 08:34:20 | 只看該作者
17#
發(fā)表于 2025-3-24 10:47:15 | 只看該作者
18#
發(fā)表于 2025-3-24 16:06:28 | 只看該作者
The Hull Number in the Convexity of Induced Paths of Order 3,ning .. If the .-convex hull of . is .(.), then . is a .. The minimum size of a .-hull set is the .. In this paper, we show that the problem of deciding whether the .-hull number of a chordal graph is at most . is .-complete and present a linear-time algorithm to determine this parameter and provide
19#
發(fā)表于 2025-3-24 21:24:07 | 只看該作者
Supermagic Graphs with Many Odd Degrees, is equal to the same number ., called the ...Recently, Ková? et al. affirmatively answered a question by Madaras about existence of supermagic graphs with arbitrarily many different degrees. Their construction provided graphs with all degrees even. Therefore, they asked if there exists a supermagic
20#
發(fā)表于 2025-3-24 23:12:00 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/229881.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 05:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘南县| 神池县| 山阴县| 舒兰市| 芒康县| 汉寿县| 华安县| 藁城市| 德令哈市| 岐山县| 临夏市| 江达县| 赤峰市| 中山市| 河曲县| 潍坊市| 绥中县| 凤庆县| 东海县| 专栏| 南阳市| 元朗区| 泗洪县| 炎陵县| 治县。| 湖南省| 罗甸县| 临颍县| 加查县| 武安市| 赣州市| 沈丘县| 蒙自县| 阿拉尔市| 绩溪县| 合川市| 丹凤县| 本溪| 依兰县| 临朐县| 高安市|